SBOSAB5 May   2024 INA4235

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements (I2C)
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Integrated Analog-to-Digital Converter (ADC)
      2. 6.3.2 Internal Measurement and Calculation Engine
      3. 6.3.3 Low Bias Current
      4. 6.3.4 Low Voltage Supply and Wide Common-Mode Voltage Range
      5. 6.3.5 ALERT Pin
    4. 6.4 Device Functional Modes
      1. 6.4.1 Continuous Versus Triggered Operation
      2. 6.4.2 Device Low Power Modes
      3. 6.4.3 Power-On Reset
      4. 6.4.4 Averaging and Conversion Time Considerations
    5. 6.5 Programming
      1. 6.5.1 I2C Serial Interface
      2. 6.5.2 Writing to and Reading Through the I2C Serial Interface
      3. 6.5.3 High-Speed I2C Mode
      4. 6.5.4 General Call Reset
      5. 6.5.5 SMBus Alert Response
  8. Register Maps
    1. 7.1 Device Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Device Measurement Range and Resolution
      2. 8.1.2 Current and Power Calculations
      3. 8.1.3 ADC Output Data Rate and Noise Performance
      4. 8.1.4 Filtering and Input Considerations
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Select the Shunt Resistor
        2. 8.2.2.2 Configure the Device
        3. 8.2.2.3 Program the Shunt Calibration Registers
        4. 8.2.2.4 Set Desired Fault Thresholds
        5. 8.2.2.5 Calculate Returned Values
      3. 8.2.3 Application Curves
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • YBJ|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Integrated Analog-to-Digital Converter (ADC)

The INA4235 integrates a low offset 16-bit delta-sigma (ΔΣ) ADC. This ADC is multiplexed for each channel to process both the shunt voltage and bus voltage measurements. Bus voltage measurements are made with respect to IN- and GND. The shunt voltage measurement is a differential measurement of the voltage developed when the load current flows through a shunt resistor between the IN+ and IN– pins for each channel. The shunt voltage measurement has a maximum offset voltage of only 10µV and a maximum gain error of 0.1%. The low offset voltage of the shunt voltage measurement allows for increased accuracy at light load conditions for a given shunt resistor value. Another advantage of low offset is the ability to sense a lower voltage drop across the sense resistor accurately, thus allowing for a lower-value shunt resistor. Lower-value shunt resistors reduce power loss in the current-sense circuit and help improve the power efficiency of the end application.

There are no special considerations for power-supply sequencing because the bus common-mode at the IN+ and IN- pins and power-supply voltage at the VS pin are independent of each other; therefore, the bus common-mode voltage can be present with the supply voltage off, and so forth.