SBOS385B August   2019  – April 2021 INA597

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: G = 1/2
    6. 7.6 Electrical Characteristics: G = 2
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Basic Power-Supply and Signal Connections
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Operating Voltage
          2. 9.2.1.2.2 Offset Voltage Trim
          3. 9.2.1.2.3 Input Voltage Range
          4. 9.2.1.2.4 Capacitive Load Drive Capability
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Precision Instrumentation Amplifier
      3. 9.2.3 Low Power, High-Output Current, Precision, Difference Amplifier
      4. 9.2.4 Pseudoground Generator
      5. 9.2.5 Differential Input Data Acquisition
      6. 9.2.6 Precision Voltage-to-Current Conversion
      7. 9.2.7 Additional Applications
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Operating Voltage

The INA597 operates from single (4.5 V to 36 V) or dual (±2.25 V to ±18 V) supplies with excellent performance. Specifications are production tested with +5-V and ±15-V supplies. Most behavior remains unchanged throughout the full operating voltage range. Parameters that vary significantly with operating voltage are shown in Section 7.7. The internal op amp in the INA597 is a single-supply design. This design allows linear operation with the op amp common-mode voltage equal to, or slightly less than V– (or single-supply ground). Although input voltages on pins 2 and 3 that are less than the negative supply voltage do not damage the device, operation in this region is not recommended. Transient conditions at the inverting input terminal less than the negative supply can cause a positive feedback condition that could lock the device output to the negative rail.

The INA597 accurately measures differential signals that are greater than the positive power supply. For example with G = ½, the linear common-mode range extends to nearly three times the positive power supply voltage; see Section 7.7, as well as Section 9.2.1.2.3.