SBOSAE5 December   2024 INA750B

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Integrated Shunt Resistor
      2. 6.3.2 Safe Operating Area
      3. 6.3.3 Short-Circuit Duration
      4. 6.3.4 Temperature Drift Correction
      5. 6.3.5 Enhanced PWM Rejection Operation
    4. 6.4 Device Functional Modes
      1. 6.4.1 Adjusting the Output With the Reference Pin
        1. 6.4.1.1 Reference Pin Connections for Unidirectional Current Measurements
        2. 6.4.1.2 Ground Referenced Output
        3. 6.4.1.3 Reference Pin Connections for Bidirectional Current Measurements
        4. 6.4.1.4 Output Set to Mid-Supply Voltage
      2. 6.4.2 Adjustable Gain Set Using External Resistors
        1. 6.4.2.1 Adjustable Unity Gain
      3. 6.4.3 Thermal Alert Function
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Calculating Total Error
        1. 7.1.1.1 Error Sources
        2. 7.1.1.2 Reference Voltage Rejection Ratio Error
        3. 7.1.1.3 External Adjustable Gain Error
        4. 7.1.1.4 Total Error Example 1
        5. 7.1.1.5 Total Error Example 2
        6. 7.1.1.6 Total Error Example 3
        7. 7.1.1.7 Total Error Curves
    2. 7.2 Signal Filtering
    3. 7.3 Typical Application
      1. 7.3.1 High-Side, High-Drive, Solenoid Current-Sense Application
        1. 7.3.1.1 Design Requirements
        2. 7.3.1.2 Detailed Design Procedure
        3. 7.3.1.3 Application Curve
      2. 7.3.2 Speaker Enhancements and Diagnostics Using Current Sense Amplifier
        1. 7.3.2.1 Design Requirements
        2. 7.3.2.2 Detailed Design Procedure
        3. 7.3.2.3 Application Curves
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The INA750x is a voltage output, current sense amplifier with an integrated shunt resistor of 800μΩ. The INA750x is designed to monitor bidirectional current over a common-mode range of –4V to +110V, independent of the supply voltage. Adjustable gain option assists in optimizing the system dynamic range. The integration of the Kelvin connected shunt resistor with a zero-drift chopped amplifier provides calibration equivalent measurement accuracy, ultra-low temperature drift performance of ±35ppm/°C, and an optimized layout for the sensing resistor.

The INA750x is designed with enhanced PWM rejection circuitry to suppress disturbances from large (dv/dt) common-mode transients and enable real-time continuous current measurements in switcing systems. The continous measurements are critical for inline current measurements in a motor-drive application, and for solenoid valve control applications

This device operates from a single 2.7V to 5.5V power supply, drawing a maximum of 4.25mA of supply current. All versions are specified over the extended operating temperature range (–40°C to +125°C), and are available in a 14-pin VQFN package.

Package Information(1)
PART NUMBERPACKAGEPACKAGE SIZE(2)
INA750A, INA750BREM (VQFN -14)4.0mm × 5.0mm
For all available packages, see the orderable addendum at the end of the data sheet.
The package size (length × width) is a nominal value and includes pins, where applicable.
INA750B Typical ApplicationTypical Application
INA750B Maximum Continuous Current vs Ambient
            TemperatureMaximum Continuous Current vs Ambient Temperature