SBOSAE5 December   2024 INA750B

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Integrated Shunt Resistor
      2. 6.3.2 Safe Operating Area
      3. 6.3.3 Short-Circuit Duration
      4. 6.3.4 Temperature Drift Correction
      5. 6.3.5 Enhanced PWM Rejection Operation
    4. 6.4 Device Functional Modes
      1. 6.4.1 Adjusting the Output With the Reference Pin
        1. 6.4.1.1 Reference Pin Connections for Unidirectional Current Measurements
        2. 6.4.1.2 Ground Referenced Output
        3. 6.4.1.3 Reference Pin Connections for Bidirectional Current Measurements
        4. 6.4.1.4 Output Set to Mid-Supply Voltage
      2. 6.4.2 Adjustable Gain Set Using External Resistors
        1. 6.4.2.1 Adjustable Unity Gain
      3. 6.4.3 Thermal Alert Function
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Calculating Total Error
        1. 7.1.1.1 Error Sources
        2. 7.1.1.2 Reference Voltage Rejection Ratio Error
        3. 7.1.1.3 External Adjustable Gain Error
        4. 7.1.1.4 Total Error Example 1
        5. 7.1.1.5 Total Error Example 2
        6. 7.1.1.6 Total Error Example 3
        7. 7.1.1.7 Total Error Curves
    2. 7.2 Signal Filtering
    3. 7.3 Typical Application
      1. 7.3.1 High-Side, High-Drive, Solenoid Current-Sense Application
        1. 7.3.1.1 Design Requirements
        2. 7.3.1.2 Detailed Design Procedure
        3. 7.3.1.3 Application Curve
      2. 7.3.2 Speaker Enhancements and Diagnostics Using Current Sense Amplifier
        1. 7.3.2.1 Design Requirements
        2. 7.3.2.2 Detailed Design Procedure
        3. 7.3.2.3 Application Curves
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

  • This device is specified for current handling of up to 25A over the entire –40°C to +125°C temperature range using a 2oz copper pour for the input power plane, as well as no external airflow passing over the device.
  • The primary current-handling limitation for this device is how much heat is dissipated inside the package. Efforts to improve heat transfer out of the package and into the surrounding environment improve the ability of the device to handle currents of up to 25A over a wider temperature range.
  • Heat transfer improvements primarily involve larger copper power traces and planes with increased copper thickness (2oz.), as well as providing airflow to pass over the device. Thermal vias help spread the current and power dissipated over multiple board layers. The INA750x evaluation module (EVM) features a 2oz copper pour for the planes, and is capable of supporting 25A at temperatures up to 125°C.
  • The bypass capacitor must be placed close to device ground and supply pins, but can be moved farther out if needed to avoid cutting thermal planes. The recommended value of this bypass capacitor is 0.1µF. Additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies.