SBOS999A March   2022  – October 2022 INA851

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Related Products
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Adjustable Gain Setting
        1. 8.3.1.1 Gain Drift
      2. 8.3.2 Offset Voltage
      3. 8.3.3 Input Common-Mode Range
      4. 8.3.4 Input Protection
      5. 8.3.5 Output Clamping
      6. 8.3.6 Low Noise
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Output Common-Mode Pin
      2. 9.1.2 Output-Stage Gain Selection and Noise-Gain Shaping
      3. 9.1.3 Input Bias Current Return Path
      4. 9.1.4 Thermal Effects due to Power Dissipation
    2. 9.2 Typical Applications
      1. 9.2.1 Three-Pin Programmable Logic Controller (PLC)
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 20-Bit, 1-MSPS ADS8900B Driver Circuit With FDA Noise Filter
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Application Curves
      3. 9.2.3 24-Bit, 200 kSPS, Delta-Sigma ADS127L11 ADC Driver Circuit With FDA Noise Filter
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
        1. 10.1.1.1 PSpice® for TI
        2. 10.1.1.2 TINA-TI™ Simulation Software (Free Download)
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input Protection

The inputs of the INA851 device are individually protected for voltages up to ±40 V beyond the power supply rails. For example, a condition of VS– = –55 V on one input and VS+ = 55 V on the other input does not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. Figure 8-10 shows that if the input is overloaded, the protection circuitry limits the input current to a value of approximately 16 mA.

Figure 8-10 Input Current During an Overvoltage Condition

Figure 8-11 shows that during an input overvoltage condition, current flows through the input protection diodes into the power supplies. If the power supplies are unable to sink current, then place Zener diode clamps (ZD1 and ZD2 in Figure 8-11) on the power supplies to provide a current pathway to ground.

Figure 8-11 Input Current Path During an Overvoltage Condition

If an input stage gain greater than GIN = 1 V/V is implemented, where a gain resistor is present across the RG pins, the inputs are still well protected against overvoltage conditions; however, make sure that the input differential voltage limitations of the INA851 are not exceeded. For example, a condition of (VS+) + 40 V on both inputs does not cause damage. However, a condition of (VS–) – 40 V on one input and (VS+) + 40 V on the other input can cause damage. Precautions can include the use of external resistors in series with each of the inputs.