SLLS629M January   2006  – October 2024 ISO721 , ISO721M , ISO722 , ISO722M

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Safety Limiting Values
    7. 6.7  Insulation Specifications
    8. 6.8  Safety-Related Certifications
    9. 6.9  Electrical Characteristics, 5 V, 3.3 V
    10. 6.10 Electrical Characteristics, 5 V
    11. 6.11 Switching Characteristics, 3.3 V, 5 V
    12. 6.12 Electrical Characteristics, 3.3 V, 5 V
    13. 6.13 Electrical Characteristics, 3.3 V
    14. 6.14 Switching Characteristics, 3.3 V
    15. 6.15 Switching Characteristics, 5 V, 3.3 V
    16. 6.16 Switching Characteristics, 5 V
    17. 6.17 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Device Functional Modes
      1. 8.3.1 Device I/O Schematic
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
        1. 9.2.3.1 Insulation Characteristics Curves
        2. 9.2.3.2 Insulation Lifetime
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 PCB Material
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

To help provide reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor must be placed at input and output supply pins (VCC1 and VCC2). The capacitors must be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments SN6501 device. For such applications, detailed power supply design and transformer selection recommendations are available in the SN6501 Transformer Driver for Isolated Power Supplies data sheet.