SLLS965E July   2009  – November 2024 ISO7220A-Q1 , ISO7221A-Q1 , ISO7221C-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  Recommended Operating Conditions
    3. 5.3  Safety-Related Certifications
    4. 5.4  Thermal Information
    5. 5.5  Safety Limiting Values
    6. 5.6  Insulation Specifications
    7. 5.7  Electrical Characterstics
    8. 5.8  Electrical Characteristics
    9. 5.9  Electrical Characteristics
    10. 5.10 Electrical Charcteristics
    11. 5.11 Switching Characteristics
    12. 5.12 Switching Characteristics
    13. 5.13 Switching Characteristics
    14. 5.14 Switching Characteristics
    15. 5.15 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Insulation Lifetime
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 PCB Material
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

A minimum of four layers are required to accomplish a low EMI PCB design (see Figure 8-5). Layer stacking must be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.

  • Route the high-speed traces on the top layer to avoid the use of vias (and the introduction of the inductances) and allow for clean interconnects between the isolator and the transmitter and receiver circuits of the data link.
  • Place a solid ground plane next to the high-speed signal layer to establish controlled impedance for transmission line interconnects and provide an excellent low-inductance path for the return current flow.
  • Place the power plane next to the ground plane to create additional high-frequency bypass capacitance of approximately 100 pF/in2.
  • Route the slower speed control signals on the bottom layer to allow for greater flexibility as these signal links typically have margin to tolerate discontinuities such as vias.

If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep the planes symmetrical. Adding a second plane system to the stack makes the stack mechanically stable and prevents warping. The power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly.

For detailed layout recommendations, refer to the Digital Isolator Design Guide.