SWRS211C May   2017  – October 2018 IWR1443

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagram
    2. 4.2 Signal Descriptions
      1. Table 4-1 Signal Descriptions
    3. 4.3 Pin Multiplexing
  5. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Power-On Hours (POH)
    4. 5.4 Recommended Operating Conditions
    5. 5.5 Power Supply Specifications
    6. 5.6 Power Consumption Summary
    7. 5.7 RF Specification
    8. 5.8 Thermal Resistance Characteristics for FCBGA Package [ABL0161]
    9. 5.9 Timing and Switching Characteristics
      1. 5.9.1  Power Supply Sequencing and Reset Timing
      2. 5.9.2  Synchronized Frame Triggering
      3. 5.9.3  Input Clocks and Oscillators
        1. 5.9.3.1 Clock Specifications
      4. 5.9.4  Multibuffered / Standard Serial Peripheral Interface (MibSPI)
        1. 5.9.4.1 Peripheral Description
        2. 5.9.4.2 MibSPI Transmit and Receive RAM Organization
          1. Table 5-8  SPI Timing Conditions
          2. Table 5-9  SPI Master Mode Switching Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO = output, and SPISOMI = input)
          3. Table 5-10 SPI Master Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO = output, and SPISOMI = input)
        3. 5.9.4.3 SPI Slave Mode I/O Timings
          1. Table 5-11 SPI Slave Mode Switching Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output)
        4. 5.9.4.4 Typical Interface Protocol Diagram (Slave Mode)
      5. 5.9.5  LVDS Interface Configuration
        1. 5.9.5.1 LVDS Interface Timings
      6. 5.9.6  General-Purpose Input/Output
        1. Table 5-13 Switching Characteristics for Output Timing versus Load Capacitance (CL)
      7. 5.9.7  Controller Area Network Interface (DCAN)
        1. Table 5-14 Dynamic Characteristics for the DCANx TX and RX Pins
      8. 5.9.8  Serial Communication Interface (SCI)
        1. Table 5-15 SCI Timing Requirements
      9. 5.9.9  Inter-Integrated Circuit Interface (I2C)
        1. Table 5-16 I2C Timing Requirements
      10. 5.9.10 Quad Serial Peripheral Interface (QSPI)
        1. Table 5-17 QSPI Timing Conditions
        2. Table 5-18 Timing Requirements for QSPI Input (Read) Timings
        3. Table 5-19 QSPI Switching Characteristics
      11. 5.9.11 JTAG Interface
        1. Table 5-20 JTAG Timing Conditions
        2. Table 5-21 Timing Requirements for IEEE 1149.1 JTAG
        3. Table 5-22 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG
      12. 5.9.12 Camera Serial Interface (CSI)
        1. Table 5-23 CSI Switching Characteristics
  6. 6Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 External Interfaces
    4. 6.4 Subsystems
      1. 6.4.1 RF and Analog Subsystem
        1. 6.4.1.1 Clock Subsystem
        2. 6.4.1.2 Transmit Subsystem
        3. 6.4.1.3 Receive Subsystem
        4. 6.4.1.4 Radio Processor Subsystem
      2. 6.4.2 Master (Control) System
      3. 6.4.3 Host Interface
    5. 6.5 Accelerators and Coprocessors
    6. 6.6 Other Subsystems
      1. 6.6.1 A2D Data Format Over CSI2 Interface
      2. 6.6.2 ADC Channels (Service) for User Application
        1. Table 6-2 GP-ADC Parameter
    7. 6.7 Identification
    8. 6.8 Boot Modes
      1. 6.8.1 Flashing Mode
      2. 6.8.2 Functional Mode
  7. 7Applications, Implementation, and Layout
    1. 7.1 Application Information
    2. 7.2 Reference Schematic
    3. 7.3 Layout
      1. 7.3.1 Layout Guidelines
      2. 7.3.2 Layout Example
      3. 7.3.3 Stackup Details
  8. 8Device and Documentation Support
    1. 8.1 Device Nomenclature
    2. 8.2 Tools and Software
    3. 8.3 Documentation Support
    4. 8.4 Community Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Export Control Notice
    8. 8.8 Glossary
  9. 9Mechanical, Packaging, and Orderable Information
    1. 9.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Table 5-10 SPI Master Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output,
SPISIMO = output, and SPISOMI = input)(1)(2)(3)

NO. PARAMETER MIN TYP MAX UNIT
1 tc(SPC)M Cycle time, SPICLK(4) 25 256tc(VCLK) ns
2(4) tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M – 4 0.5tc(SPC)M + 4 ns
tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M – 4 0.5tc(SPC)M + 4
3(4) tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M – 4 0.5tc(SPC)M + 4 ns
tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M – 4 0.5tc(SPC)M + 4
4(4) td(SPCH-SIMO)M Delay time, SPISIMO valid before SPICLK low, (clock polarity = 0) 0.5tc(SPC)M – 3 ns
td(SPCL-SIMO)M Delay time, SPISIMO valid before SPICLK high, (clock polarity = 1) 0.5tc(SPC)M – 3
5(4) tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low, (clock polarity = 0) 0.5tc(SPC)M – 10.5 ns
tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high, (clock polarity = 1) 0.5tc(SPC)M – 10.5
6(5) tC2TDELAY Setup time CS active until SPICLK high
(clock polarity = 0)
CSHOLD = 0 0.5*tc(SPC)M + (C2TDELAY + 2)*tc(VCLK) – 7 0.5*tc(SPC)M + (C2TDELAY+2) * tc(VCLK) + 7.5 ns
CSHOLD = 1 0.5*tc(SPC)M + (C2TDELAY + 2)*tc(VCLK) – 7 0.5*tc(SPC)M + (C2TDELAY+2) * tc(VCLK) + 7.5
Setup time CS active until SPICLK low
(clock polarity = 1)
CSHOLD = 0 0.5*tc(SPC)M + (C2TDELAY+2)*tc(VCLK) – 7 0.5*tc(SPC)M + (C2TDELAY+2) * tc(VCLK) + 7.5
CSHOLD = 1 0.5*tc(SPC)M + (C2TDELAY+3)*tc(VCLK) – 7 0.5*tc(SPC)M + (C2TDELAY+3) * tc(VCLK) + 7.5
7(5) tT2CDELAY Hold time, SPICLK low until CS inactive (clock polarity = 0) (T2CDELAY + 1) *tc(VCLK) – 7.5 (T2CDELAY + 1) *tc(VCLK) + 7 ns
Hold time, SPICLK high until CS inactive (clock polarity = 1) (T2CDELAY + 1) *tc(VCLK) – 7.5 (T2CDELAY + 1) *tc(VCLK) + 7
8(4) tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low
(clock polarity = 0)
5 ns
tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high
(clock polarity = 1)
5
9(4) th(SPCL-SOMI)M Hold time, SPISOMI data valid after SPICLK low
(clock polarity = 0)
3 ns
th(SPCH-SOMI)M Hold time, SPISOMI data valid after SPICLK high
(clock polarity = 1)
3
The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set ( where x = 0 or 1 ).
tc(MSS_VCLK) = master subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.
When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25 ns.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
C2TDELAY and T2CDELAY is programmed in the SPIDELAY register
IWR1443 SPI_master_mode_external_timing_phase1.gifFigure 5-7 SPI Master Mode External Timing (CLOCK PHASE = 1)
IWR1443 SPI_master_mode_chip_select_phase1.gifFigure 5-8 SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)