SWRS323 November   2023  – April 2024 IWRL6432AOP

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Functional Block Diagram
  6. Device Comparison
    1. 5.1 Related Products
  7. Terminal Configurations and Functions
    1. 6.1 Pin Diagrams
    2.     10
    3. 6.2 Signal Descriptions
      1.      12
      2.      13
      3.      14
      4.      15
      5.      16
      6.      17
      7.      18
      8.      19
      9.      20
      10.      21
      11.      22
      12.      23
      13.      24
      14.      25
      15.      26
      16.      27
  8. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Power-On Hours (POH)
    4. 7.4  Recommended Operating Conditions
    5. 7.5  VPP Specifications for One-Time Programmable (OTP) eFuses
      1. 7.5.1 Recommended Operating Conditions for OTP eFuse Programming
      2. 7.5.2 Hardware Requirements
      3. 7.5.3 Impact to Your Hardware Warranty
    6. 7.6  Power Supply Specifications
      1. 7.6.1 Power Optimized 3.3V I/O Topology
      2. 7.6.2 Power Optimized 1.8V I/O Topology
      3. 7.6.3 BOM Optimized 3.3V I/O Topology
      4. 7.6.4 BOM Optimized 1.8V I/O Topology
      5. 7.6.5 System Topologies
        1. 7.6.5.1 Power Topologies
          1. 7.6.5.1.1 BOM Optimized Mode
          2. 7.6.5.1.2 Power Optimized Mode
      6. 7.6.6 Internal LDO output decoupling capacitor and layout conditions for BOM optimized topology
        1. 7.6.6.1 Single-capacitor rail
          1. 7.6.6.1.1 1.2V Digital LDO
        2. 7.6.6.2 Two-capacitor rail
          1. 7.6.6.2.1 1.2V RF LDO
          2. 7.6.6.2.2 1.2V SRAM LDO
          3. 7.6.6.2.3 1.0V RF LDO
      7. 7.6.7 Noise and Ripple Specifications
    7. 7.7  Power Save Modes
      1. 7.7.1 Typical Power Consumption Numbers
    8. 7.8  Peak Current Requirement per Voltage Rail
    9. 7.9  Supported DFE Features
    10. 7.10 RF Specification
    11. 7.11 CPU Specifications
    12. 7.12 Thermal Resistance Characteristics
    13. 7.13 Antenna Radiation Patterns
      1. 7.13.1 Antenna Radiation Patterns for Receiver
      2. 7.13.2 Antenna Radiation Patterns for Transmitter
    14. 7.14 Antenna Positions
    15. 7.15 Timing and Switching Characteristics
      1. 7.15.1  Power Supply Sequencing and Reset Timing
      2. 7.15.2  Synchronized Frame Triggering
      3. 7.15.3  Input Clocks and Oscillators
        1. 7.15.3.1 Clock Specifications
      4. 7.15.4  MultiChannel buffered / Standard Serial Peripheral Interface (McSPI)
        1. 7.15.4.1 McSPI Features
        2. 7.15.4.2 SPI Timing Conditions
        3. 7.15.4.3 SPI—Controller Mode
          1. 7.15.4.3.1 Timing and Switching Requirements for SPI - Controller Mode
          2. 7.15.4.3.2 Timing and Switching Characteristics for SPI Output Timings—Controller Mode
        4. 7.15.4.4 SPI—Peripheral Mode
          1. 7.15.4.4.1 Timing and Switching Requirements for SPI - Peripheral Mode
          2. 7.15.4.4.2 Timing and Switching Characteristics for SPI Output Timings—Secondary Mode
      5. 7.15.5  RDIF Interface Configuration
        1. 7.15.5.1 RDIF Interface Timings
        2. 7.15.5.2 RDIF Data Format
      6. 7.15.6  General-Purpose Input/Output
        1. 7.15.6.1 Switching Characteristics for Output Timing versus Load Capacitance (CL)
      7. 7.15.7  Controller Area Network - Flexible Data-rate (CAN-FD)
        1. 7.15.7.1 Dynamic Characteristics for the CANx TX and RX Pins
      8. 7.15.8  Serial Communication Interface (SCI)
        1. 7.15.8.1 SCI Timing Requirements
      9. 7.15.9  Inter-Integrated Circuit Interface (I2C)
        1. 7.15.9.1 I2C Timing Requirements
      10. 7.15.10 Quad Serial Peripheral Interface (QSPI)
        1. 7.15.10.1 QSPI Timing Conditions
        2. 7.15.10.2 Timing Requirements for QSPI Input (Read) Timings
        3. 7.15.10.3 QSPI Switching Characteristics
      11. 7.15.11 JTAG Interface
        1. 7.15.11.1 JTAG Timing Conditions
        2. 7.15.11.2 Timing Requirements for IEEE 1149.1 JTAG
        3. 7.15.11.3 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Subsystems
      1. 8.3.1 RF and Analog Subsystem
      2. 8.3.2 Clock Subsystem
      3. 8.3.3 Transmit Subsystem
      4. 8.3.4 Receive Subsystem
      5. 8.3.5 Processor Subsystem
      6. 8.3.6 Host Interface
      7. 8.3.7 Application Subsystem Cortex-M4F
      8. 8.3.8 Hardware Accelerator (HWA1.2) Features
        1. 8.3.8.1 Hardware Accelerator Feature Differences Between HWA1.1 and HWA1.2
    4. 8.4 Other Subsystems
      1. 8.4.1 GPADC Channels (Service) for User Application
      2. 8.4.2 GPADC Parameters
    5. 8.5 Memory Partitioning Options
    6. 8.6 Boot Modes
  10. Monitoring and Diagnostics
  11. 10Applications, Implementation, and Layout
    1. 10.1 Application Information
    2. 10.2 Reference Schematic
  12. 11Device and Documentation Support
    1. 11.1 Device Nomenclature
    2. 11.2 Tools and Software
    3. 11.3 Documentation Support
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
  • AMY|101
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The IWRL6432AOP mmWave Sensor device is an Antenna-on-Package (AOP) device that is an evolution within integrated single chip mmWave sensor based on FMCW radar technology. The device is capable of operation in the 57GHz to 63.9GHz band and is partitioned into mainly four power domains:

  • RF/Analog Sub-System: This block includes all the RF and Analog components required to transmit and receive the RF signals.
  • Front-End Controller sub-System (FECSS): FECSS contains processor ARM Cortex M3, responsible for radar front-end configuration, control, and calibration.
  • Application Sub-System (APPSS): APPSS is where the device implements a user programmable ARM Cortex M4 allowing for custom control and automotive interface applications. Top Sub-System (TOPSS) is part of the APPSS power domain and contains the clocking and power management sub-blocks.
  • Hardware Accelerator (HWA): HWA block supplements the APPSS by offloading common radar processing such as FFT, Constant False Alarm rate (CFAR), scaling, and compression.

IWRL6432AOP is specifically designed to have separate control for each of the above-mentioned power domains to control states (power ON or OFF) based on use case requirements. The device also features the capability to exercise various low-power states like sleep and deep sleep, where low-power sleep mode is achieved by clock gating and by turning off some of the internal IP blocks of the device. The device also provides the option of keeping some contents of the device, like Application image or RF profile retained in such scenarios.

Additionally, the device is built with TI’s low power 45nm RF CMOS process and enables unprecedented levels of integration in an extremely small form factor. IWRL6432AOP is designed for low power, self-monitored, ultra-accurate radar systems in the industrial (and personal electronics) space for applications such as building/factory automation, commercial/residential security, personal electronics, presence/motion detection, and gesture detection/recognition for human machine interfaces

Packaging Information
PRE-PRODUCTION PART NUMBER (1) PACKAGE BODY SIZE(2) TRAY / TAPE AND REEL

DESCRIPTION

XI6432BRQAAMY AMY (FCCSP, 101) 10.9mmx 6.7 mm Tray Pre-production; Generic Part
PRODUCTION PART NUMBER (1) PACKAGE BODY SIZE(2) TRAY / TAPE AND REEL

DESCRIPTION

IWRL6432BRQGAMYR AMY (FCCSP, 101) 10.9mmx 6.7 mm Tape & Reel Production; Deep sleep enabled; Generic Part
IWRL6432BRBAAMYR AMY (FCCSP, 101) 10.9mmx 6.7 mm Tape & Reel Production; Generic part; SIL2; Authenticated Boot capable
IWRL6432BRBAAMY AMY (FCCSP, 101) 10.9mmx 6.7 mm Tray Production; Deep sleep enabled; SIL2; Authenticated boot capable
For more information, see Device Nomenclature