SLRS008D September   1986  – January 2016 L293 , L293D

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
    3. 9.3 System Examples
      1. 9.3.1 L293D as a Two-Phase Motor Driver
      2. 9.3.2 DC Motor Controls
      3. 9.3.3 Bipolar Stepping-Motor Control
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage, VCC1(2) 36 V
Output supply voltage, VCC2 36 V
Input voltage, VI 7 V
Output voltage, VO –3 VCC2 + 3 V
Peak output current, IO (nonrepetitive, t ≤ 5 ms): L293 –2 2 A
Peak output current, IO (nonrepetitive, t ≤ 100 µs): L293D –1.2 1.2 A
Continuous output current, IO: L293 –1 1 A
Continuous output current, IO: L293D –600 600 mA
Maximum junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to the network ground terminal.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage VCC1 4.5 7 V
VCC2 VCC1 36
VIH High-level input voltage VCC1 ≤ 7 V 2.3 VCC1 V
VCC1 ≥ 7 V 2.3 7 V
VIL Low-level output voltage –0.3(1) 1.5 V
TA Operating free-air temperature 0 70 °C
(1) The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage levels.

6.4 Thermal Information

THERMAL METRIC(1) L293, L293D UNIT
NE (PDIP)
16 PINS
RθJA Junction-to-ambient thermal resistance (2) 36.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 22.5 °C/W
RθJB Junction-to-board thermal resistance 16.5 °C/W
ψJT Junction-to-top characterization parameter 7.1 °C/W
ψJB Junction-to-board characterization parameter 16.3 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) The package thermal impedance is calculated in accordance with JESD 51-7.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH High-level output voltage L293: IOH = −1 A VCC2 – 1.8 VCC2 – 1.4 V
L293D: IOH = − 0.6 A
VOL Low-level output voltage L293: IOL = 1 A 1.2 1.8 V
L293D: IOL = 0.6 A
VOKH High-level output clamp voltage L293D: IOK = –0.6 A VCC2 + 1.3 V
VOKL Low-level output clamp voltage L293D: IOK = 0.6 A 1.3 V
IIH High-level input current A VI = 7 V 0.2 100 µA
EN 0.2 10
IIL Low-level input current A VI = 0 –3 –10 µA
EN –2 –100
ICC1 Logic supply current IO = 0 All outputs at high level 13 22 mA
All outputs at low level 35 60
All outputs at high impedance 8 24
ICC2 Output supply current IO = 0 All outputs at high level 14 24 mA
All outputs at low level 2 6
All outputs at high impedance 2 4

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted) VCC1 = 5 V, VCC2 = 24 V, TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH Propagation delay time, low-to-high-level output from A input L293NE, L293DNE CL = 30 pF,
See Figure 2
800 ns
L293DWP, L293N L293DN 750
tPHL Propagation delay time, high-to-low-level output from A input L293NE, L293DNE 400 ns
L293DWP, L293N L293DN 200
tTLH Transition time, low-to-high-level output L293NE, L293DNE 300 ns
L293DWP, L293N L293DN 100
tTHL Transition time, high-to-low-level output L293NE, L293DNE 300 ns
L293DWP, L293N L293DN 350

6.7 Typical Characteristics

L293 L293D max_power_ambient_temp.gif Figure 1. Maximum Power Dissipation vs Ambient Temperature