This typical
characteristics section is applicable for LM324B and LM2902B. Typical
characteristics data in this section was taken with TA = 25°C,
VS = 36 V (±18 V), VCM = VS / 2,
RLOAD = 10 kΩ connected to VS / 2 (unless otherwise
noted).
Figure 5-1 Offset Voltage Production Distribution
Figure 5-3 Offset Voltage vs Temperature
Figure 5-5 Open-Loop Gain and Phase vs Frequency
Figure 5-7 Output Voltage Swing vs Output Current (Sourcing)
Figure 5-9 PSRR
vs Frequency
Figure 5-11 Power
Supply Rejection Ratio vs Temperature
Figure 5-13 Input
Voltage Noise Spectral Density vs Frequency![LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV THD+N
Ratio vs Frequency, G = –1 LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV THD+N
Ratio vs Frequency, G = –1](/ods/images/SLOS066AD/GUID-20220923-SS0I-397S-CVJV-WZ45JVRDNZXQ-low.svg)
G = –1, f = 1 kHz, BW = 80
kHz, |
VOUT = 10
VPP, RL connected to
V– |
See Section 6 |
Figure 5-15 THD+N
Ratio vs Frequency, G = –1![LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV THD+N
vs Output Amplitude, G = –1 LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV THD+N
vs Output Amplitude, G = –1](/ods/images/SLOS066AD/GUID-20220923-SS0I-15VM-1N6C-RT7SCLLTCNZ4-low.svg)
G = –1, f = 1 kHz, BW = 80
kHz, |
RL connected to
V– |
See Section 6 |
Figure 5-17 THD+N
vs Output Amplitude, G = –1
Figure 5-19 Quiescent Current vs Temperature![LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV Small-Signal Overshoot vs Capacitive Load LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV Small-Signal Overshoot vs Capacitive Load](/ods/images/SLOS066AD/GUID-20220923-SS0I-BGGF-J4DC-BR93QCK0WTGW-low.svg)
G = 1, 100-mV output step,
RL = open |
Figure 5-21 Small-Signal Overshoot vs Capacitive Load![LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV Phase
Margin vs Capacitive Load LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV Phase
Margin vs Capacitive Load](/ods/images/SLOS066AD/GUID-20220923-SS0I-GNWT-H4WC-BPRX8XDZHDNJ-low.svg)
G = +1, RL = 10
kΩ, CL = 20 pF |
Figure 5-23 Phase
Margin vs Capacitive Load
Figure 5-25 Overload Recovery (Negative Rail)
Figure 5-27 Small-Signal Step Response, G = –1
Figure 5-29 Large-Signal Step Response, G = 1
Figure 5-31 Short-Circuit Current vs Temperature
Figure 5-33 Channel Separation vs Frequency
Figure 5-2 Offset Voltage Drift Distribution
Figure 5-4 Offset Voltage vs Common-Mode Voltage
Figure 5-6 Closed-Loop Gain vs Frequency
Figure 5-8 CMRR vs Frequency
Figure 5-10 Common-Mode Rejection Ratio vs
Temperature
Figure 5-12 0.1-Hz to 10-Hz Noise![LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV THD+N
Ratio vs Frequency, G = 1 LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV THD+N
Ratio vs Frequency, G = 1](/ods/images/SLOS066AD/GUID-20220923-SS0I-NDNF-9LVL-N7FK0TQFMTZP-low.svg)
G = 1, f = 1 kHz, BW = 80
kHz, |
VOUT = 10
VPP, RL connected to
V– |
Figure 5-14 THD+N
Ratio vs Frequency, G = 1![LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV THD+N
vs Output Amplitude, G = 1 LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV THD+N
vs Output Amplitude, G = 1](/ods/images/SLOS066AD/GUID-20220923-SS0I-VHLN-GTT4-P5KSQR7NDH4C-low.svg)
G = 1, f = 1 kHz, BW = 80
kHz, |
RL connected to
V– |
|
Figure 5-16 THD+N
vs Output Amplitude, G = 1
Figure 5-18 Quiescent Current vs Supply Voltage
Figure 5-20 Open-Loop Output Impedance vs Frequency![LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV Small-Signal Overshoot vs Capacitive Load LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324BA LM324K LM324KA LM2902 LM2902B LM2902BA LM2902K LM2902KV LM2902KAV Small-Signal Overshoot vs Capacitive Load](/ods/images/SLOS066AD/GUID-20220923-SS0I-FMMH-2JBG-WSFV1ZHL9FLZ-low.svg)
G = –1, 100-mV output step,
RL = open |
Figure 5-22 Small-Signal Overshoot vs Capacitive Load
Figure 5-24 Overload Recovery (Positive Rail)
Figure 5-26 Small-Signal Step Response, G = 1
Figure 5-28 Large-Signal Step Response (Falling)
Figure 5-30 Large-Signal Step Response, G = –1
Figure 5-32 Maximum Output Voltage vs Frequency
Figure 5-34 EMIRR
(Electromagnetic Interference Rejection Ratio) vs Frequency