SNVSCH8A September   2023  – October 2023 LM2104

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Timing Diagrams
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Start-Up and UVLO
      2. 7.3.2 Input Stages
      3. 7.3.3 Level Shift
      4. 7.3.4 Output Stages
      5. 7.3.5 SH Transient Voltages Below Ground
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Select Bootstrap and GVDD Capacitor
        2. 8.2.2.2 Select External Gate Driver Resistor
        3. 8.2.2.3 Estimate the Driver Power Loss
      3. 8.2.3 Application Curves
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Application Curves

Figure 8-2 shows the GL fall time and GH rise time as well as the propagation delays for both GL and GH when the input IN transitions from low to high. Likewise, Figure 8-3 shows the GL rise time and GH fall time as well as the propagation delays for both GL and GH when the input IN transitions from high to low. Each channel (IN, SD, GH, and GL) is labeled and displayed on the left hand of the waveforms.

The testing condition: load capacitance is 1 nF, gate resistor is 4 Ω, VDD = 12 V, fSW = 50 kHz.

GUID-20230922-SS0I-CSMQ-W38V-XB0QQHDZ3JX7-low.svg
CL = 1 nF RG = 4 Ω VDD = 12 V fSW = 50 kHz
Figure 8-2 GL Fall Time, GH Rise Time and Propagation Delays
GUID-20230922-SS0I-KVWB-3DW3-LHWLHSBNPKSW-low.svg
CL = 1 nF RG = 4 Ω VDD = 12 V fSW = 50 kHz
Figure 8-3 GL Rise Time, GH Fall Time and Propagation Delays