SNVS543N January   2008  – June 2017 LM26480

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions: Bucks
    4. 7.4  Thermal Information
    5. 7.5  General Electrical Characteristics
    6. 7.6  Low Dropout Regulators, LDO1 and LDO2
    7. 7.7  Buck Converters SW1, SW2
    8. 7.8  I/O Electrical Characteristics
    9. 7.9  Power On Reset Threshold/Function (POR)
    10. 7.10 Typical Characteristics — LDO
    11. 7.11 Typical Characteristics — Buck 2.8 V to 5.5 V
    12. 7.12 Typical Characteristics — Bucks 1 and 2
    13. 7.13 Typical Characteristics — Buck 3.6 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 DC-DC Converters
        1. 8.3.1.1 Linear Low Dropout Regulators (LDOs)
          1. 8.3.1.1.1 No-Load Stability
        2. 8.3.1.2 SW1, SW2: Synchronous Step-Down Magnetic DC-DC Converters
          1. 8.3.1.2.1  Functional Description
          2. 8.3.1.2.2  Circuit Operation Description
          3. 8.3.1.2.3  Sync Function
          4. 8.3.1.2.4  PWM Operation
          5. 8.3.1.2.5  Internal Synchronous Rectification
          6. 8.3.1.2.6  Current Limiting
          7. 8.3.1.2.7  PFM Operation
          8. 8.3.1.2.8  SW1, SW2 Control
          9. 8.3.1.2.9  Shutdown Mode
          10. 8.3.1.2.10 Soft Start
          11. 8.3.1.2.11 Low Dropout Operation
          12. 8.3.1.2.12 Flexible Power-On Reset (Power Good with Delay)
          13. 8.3.1.2.13 Undervoltage Lockout
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 External Component Selection
      2. 9.1.2 Feedback Resistors for LDOs
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 High VIN- High Load Operation
        2. 9.2.1.2 Junction Temperature
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Output Inductors and Capacitors for SW1 AND SW2
          1. 9.2.2.1.1 Inductor Selection for SW1 and SW2
          2. 9.2.2.1.2 Suggested Inductors and Their Suppliers
        2. 9.2.2.2 Output Capacitor Selection for SW1 and SW2
        3. 9.2.2.3 Input Capacitor Selection for SW1 and SW2
        4. 9.2.2.4 LDO Capacitor Selection
          1. 9.2.2.4.1 Input Capacitor
          2. 9.2.2.4.2 Output Capacitor
          3. 9.2.2.4.3 Capacitor Characteristics
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)
MIN MAX UNIT
VINLDO12, VIN1, AVDD, VIN2, VINLDO1, VINLDO2, ENSW1, FB1, FB2, ENSW2, ENLDO1, ENLDO2, SYNC, FBL1, FBL2 −0.3 6 V
GND to GND SLUG ±0.3
Power dissipation, PD_MAX (TA = 85°C, TMAX = 125°C)(3) 1.17 W
Junction temperature, TJ-MAX 150 °C
Storage temperature, Tstg −65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions: Bucks. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to the potential at the GND pin.
In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP − (RθJA × PD-MAX). See Application and Implementation.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±750
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions: Bucks

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN 2.8 5.5 V
VEN 0 (VIN + 0.3 V)
Junction temperature, TJ –40 125 °C
Ambient temperature, TA(1) –40 85 °C
Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.

Thermal Information

THERMAL METRIC(1) LM26480 UNIT
RTW (WQFN)
24 PINS
RθJA Junction-to-ambient thermal resistance 32.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 31.2 °C/W
RθJB Junction-to-board thermal resistance 11.2 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 11.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.4 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

General Electrical Characteristics

Unless otherwise noted, VIN = 3.6 V. Values and limits apply for TJ = 25°C.(1)(2)(3)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IQ VINLDO12 shutdown current VIN = 3.6 V 0.5 µA
VPOR Power-on reset threshold VDD falling edge(5) 1.9 V
TSD Thermal shutdown threshold See(4) 160 °C
TSDH Thermal shutdown hysteresis See(4) 20
UVLO Undervoltage lockout Rising 2.9 V
Failing 2.7
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to the potential at the GND pin.
Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical numbers represent the most likely norm.
Specified by design. Not production tested.
VPOR is voltage at which the EPROM resets. This is different from the UVLO on VINLDO12, which is the voltage at which the regulators shut off; and is also different from the nPOR function, which signals if the regulators are in a specified range.

Low Dropout Regulators, LDO1 and LDO2

Unless otherwise noted, VIN = 3.6 V, CIN = 1 µF, COUT = 0.47 µF, and values and limits apply for TJ = 25°C, unless otherwise specified. (1)(2)(3)(4)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Operational voltage range VINLDO1 and VINLDO2 PMOS pins(5)
TJ = −40°C to 125°C
1.74 5.5 V
VFB FB voltage accuracy TJ = −40°C to 125°C –3% 3%
ΔVOUT Line regulation VIN = (VOUT + 0.3 V) to 5 V(6)
Load current = 1 mA
TJ = −40°C to 125°C
0.15 %/V
Load regulation VIN = 3.6 V, TJ = −40°C to 125°C
Load current = 1 mA to IMAX
0.011 %/mA
ISC Short circuit current limit LDO1-2, VOUT = 0 V 500 mA
VIN – VOUT Dropout voltage Load current = 50 mA(7)
25 mV
Load current = 50 mA(7)
TJ = −40°C to 125°C
200
PSRR Power supply ripple rejection F = 10 kHz, load current = IMAX 45 dB
eN Supply output noise 10 Hz < F < 100 kHz 150 µVRMS
IQ Quiescent current on IOUT = 0 mA 40 µA
IOUT = 0 mA, −40°C ≤ TJ ≤ 125°C 150
Quiescent current on IOUT = 300 mA 60
IOUT = 300 mA, −40°C ≤ TJ ≤ 125°C 200
Quiescent current off EN is de-asserted 0.03 1 µA
TON Turnon time Start-up from shutdown 300 µsec
COUT Output capacitor Capacitance for stability 0°C ≤ TJ ≤ 125°C 0.47 µF
−40°C ≤ TJ ≤ 125°C 0.33
−40°C ≤ TJ ≤ 125°C 0.68 1
Equivalent series resistance (ESR)
TJ = −40°C to 125°C
5 500
All voltages are with respect to the potential at the GND pin.
Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers represent the most likely norm.
CIN, COUT: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
The device maintains a stable, regulated output voltage without a load.
Pins 24, 19 can operate from VIN min of 1.74 V to a VIN max of 5.5 V. This rating is only for the series pass PMOS power FET. It allows the system design to use a lower voltage rating if the input voltage comes from a buck output.
VIN minimum for line regulation values is 1.8 V.
Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its nominal value.

Buck Converters SW1, SW2

Unless otherwise noted, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, LOUT = 2.2 µH, and limits apply for TJ = 25°C, unless otherwise specified.(1) (2)(3)(4)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VFB(5) Feedback voltage −3% 3%
VOUT Line regulation 2.8 V < VIN < 5.5 V
IOUT = 10 mA
0.089 %/V
Load regulation 100 mA < IOUT < IMAX 0.0013 %/mA
Eff Efficiency Load current = 250 mA 96%
ISHDN Shutdown supply current EN is de-asserted 0.01 1 µA
ƒOSC Internal oscillator frequency Default oscillator frequency = 2 MHz 1.6 2 2.4 MHz
Default oscillator frequency = 2.1 MHz 2.1 2.5
Default oscillator frequency = 2.1 MHz
TJ = −40°C to 125°C
1.7
IPEAK Buck1 peak switching current limit 2 2.4 A
Buck2 peak switching current limit 2 2.4
IQ Quiescent current on(6) No load PFM mode 33 µA
No load PWM mode (forced PWM) 2 mA
RDSON (P) Pin-pin resistance PFET 200 400
RDSON (N) Pin-pin resistance NFET 180 400
TON Turnon time Start-up from shutdown 500 µsec
CIN Input capacitor Capacitance for stability 10 µF
COUT Output capacitor Capacitance for stability 10
All voltages are with respect to the potential at the GND pin.
Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers represent the most likely norm.
CIN, COUT: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
The device maintains a stable, regulated output voltage without a load.
VIN ≥ VOUT + RDSON(P) (IOUT + 1/2 IRIPPLE). If these conditions are not met, voltage regulation will degrade as load increases.
Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT.

I/O Electrical Characteristics

Limits apply over the entire junction temperature range for operation, TJ = −40°C to +125°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIL Input low level 0.4 V
VIH Input high level 0.7 × VDD

Power On Reset Threshold/Function (POR)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
nPOR nPOR = Power-on reset for Buck1 and Buck2 Default = 60 ms 60 ms
Default = 130 µs 130 µs
nPOR Threshold Percentage of target voltage Buck1 or Buck2 VBUCK1 AND VBUCK2 rising 92%
VBUCK1 OR VBUCK2 falling 82%
VOL Output level low Load = IOL = 500 µA 0.23 0.5 V

Typical Characteristics — LDO

LM26480 30040466.gif
VIN = 3.6 V VOUT = 2.5 V Load = 100 mA
Figure 1. Output Voltage Change vs Temperature (LDO1)
LM26480 30040437.png
VIN = 3.6 V VOUT = 2.5 V Load = 0 to 150 mA
Figure 3. Load Transient
LM26480 30040439.png
VIN = 3.6 to 4.2 V VOUT = 2.5 V Load = 100 mA
Figure 5. Line Transient (LDO1)
LM26480 30040455.gif
VIN = 3.6 V VOUT = 1.8 V Load = 100 mA
Figure 2. Output Voltage Change vs Temperature (LDO2)
LM26480 30040438.png
VIN = 3.6 V VOUT = 2.5 V Load = 150 to 300 mA
Figure 4. Load Transient
LM26480 30040440.png
VIN = 3.6 to 4.2 V VOUT = 1.8 V Load = 150 mA
Figure 6. Line Transient (LDO2)

Typical Characteristics — Buck 2.8 V to 5.5 V

VIN = 2.8 V to 5.5 V, TA = 25°C
LM26480 30040443.gif
Figure 7. Shutdown Current vs. Temp
LM26480 30040445.gif
VOUT = 2 V
Figure 9. Output Voltage vs. Supply Voltage
LM26480 30040444.gif
VOUT = 1.2 V
Figure 8. Output Voltage vs. Supply Voltage
LM26480 30040446.gif
VOUT = 3 V
Figure 10. Output Voltage vs. Supply Voltage

Typical Characteristics — Bucks 1 and 2

Output current transitions from PFM mode to PWM mode for Buck 1.
LM26480 30040447.gif
VOUT = 1.2 V L = 2.2 µH
Figure 11. Efficiency vs. Output Current
LM26480 30040448.gif
VOUT = 2 V L = 2.2 µH
Figure 12. Efficiency vs. Output Current
Output Current transitions from PWM mode to PFM mode for Buck 2.
LM26480 30040449.gif
VOUT = 3 V L = 2.2 µH
Figure 13. Efficiency vs. Output Current
LM26480 30040450.gif
VOUT = 3.5 V L = 2.2 µH
Figure 14. Efficiency vs. Output Current

Typical Characteristics — Buck 3.6 V

VIN= 3.6 V, TA = 25°C, VOUT = 1.2 V unless otherwise noted
LM26480 30040456.png
VOUT = 1.2 V (PWM Mode)
Figure 15. Load Transient Response
LM26480 30040458.png
VIN = 3.6 to 4.2 V VOUT = 1.2 V Load = 250 mA
Figure 17. Line Transient Response
LM26480 30040457.png
VOUT = 1.2 V (PWM To PFM)
Figure 16. Mode Change By Load Transients
LM26480 30040459.png
VIN = 3 to 3.6 V VOUT = 3 V Load = 250 mA
Figure 18. Line Transient Response