SNVS031M april   2000  – may 2023 LM2676

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: LM2676 – 3.3 V
    6. 6.6  Electrical Characteristics: LM2676 – 5 V
    7. 6.7  Electrical Characteristics: LM2676 – 12 B
    8. 6.8  Electrical Characteristics: LM2676 – Adjustable
    9. 6.9  Electrical Characteristics – All Output Voltage Versions
    10. 6.10 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Switch Output
      2. 7.3.2 Input
      3. 7.3.3 C Boost
      4. 7.3.4 Ground
      5. 7.3.5 Feedback
      6. 7.3.6 ON/OFF
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Active Mode
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Design Considerations
      2. 8.1.2 Inductor
      3. 8.1.3 Output Capacitor
      4. 8.1.4 Input Capacitor
      5. 8.1.5 Catch Diode
      6. 8.1.6 Boost Capacitor
      7. 8.1.7 Additional Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Typical Application for All Output Voltage Versions
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Capacitor Selection Guides
          2. 8.2.1.2.2 Inductor Selection Guides
      2. 8.2.2 Application Curves
      3. 8.2.3 Fixed Output Voltage Application
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
          1. 8.2.3.2.1 Capacitor Selection
      4. 8.2.4 Adjustable Output Voltage Application
        1. 8.2.4.1 Design Requirements
        2. 8.2.4.2 Detailed Design Procedure
          1. 8.2.4.2.1 Capacitor Selection
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  10. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 DAP (VSON Package)

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Design Considerations

Power supply design using the LM2676 is greatly simplified by using recommended external components. A wide range of inductors, capacitors, and Schottky diodes from several manufacturers have been evaluated for use in designs that cover the full range of capabilities (input voltage, output voltage, and load current) of the LM2676. A simple design procedure using nomographs and component tables provided in this data sheet leads to a working design with very little effort.

The individual components from the various manufacturers called out for use are still just a small sample of the vast array of components available in the industry. While TI recommends these components, they are not exclusively the only components for use in a design. After a close comparison of component specifications, equivalent devices from other manufacturers can be substituted for use in an application.

The following sections include important considerations for each external component and an explanation of how the nomographs and selection tables were developed.