SNVS153F May   2001  – September 2016 LM2698

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Inductor
      2. 7.3.2 Current Limit
      3. 7.3.3 Diode
      4. 7.3.4 Input Capacitor
      5. 7.3.5 Output Capacitor
    4. 7.4 Device Functional Modes
      1. 7.4.1 Continuous Conduction Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 1.25-MHz Boost Converter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Compensation
            1. 8.2.1.2.1.1 Quick Compensator Design
            2. 8.2.1.2.1.2 Improving Transient Response Time
            3. 8.2.1.2.1.3 Additional Comments on the Open Loop Frequency Response
        3. 8.2.1.3 Application Curves
      2. 8.2.2 3.3-V SEPIC
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
      3. 8.2.3 Level-Shifted SEPIC
        1. 8.2.3.1 Design Requirements
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VIN –0.3 12 V
SW voltage –0.3 18 V
FB voltage –0.3 7 V
VC voltage 0.965 1.565 V
SHDN voltage(2) –0.3 7 V
FSLCT(2) –0.3 12 V
Power dissipation(3) Internally limited °C
Lead temperature 300 °C
Vapor phase temperature (60 s) 215 °C
Infrared temperature (15 s) 220 °C
Junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Shutdown and voltage frequency select must not exceed VIN.
(3) The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(MAX), the junction-to-ambient thermal resistance, θJA, and the ambient temperature, TA. See the Electrical Characteristics for the thermal resistance of various layouts. The maximum allowable power dissipation at any ambient temperature is calculated using PD (MAX) = (TJ(MAX) – TA) / θJA. Exceeding the maximum allowable power dissipation causes excessive die temperature, and the regulator goes into thermal shutdown.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage 2.2 12 V
SW voltage 0 17.5 V
Operating junction temperature(1) –40 125 °C
(1) All limits are specified at room temperature (standard typeface) and at temperature extremes (bold typeface). All room temperature limits are 100% tested or specified through statistical analysis. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

6.4 Thermal Information

THERMAL METRIC(1) LM2698 UNIT
DGK (VSSOP)
8 PINS
RθJA Junction-to-ambient thermal resistance 142.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 49.7 °C/W
RθJB Junction-to-board thermal resistance 69.5 °C/W
ψJT Junction-to-top characterization parameter 4 °C/W
ψJB Junction-to-board characterization parameter 67.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

TJ = 25°C, VIN =2.2 V, and IL = 0 A (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
IQ Quiescent current FB = 0 V (not switching) TJ = 25°C 1.3 mA
TJ = –40°C to 125°C 2
VSHDN = 0 V TJ = 25°C 5 µA
TJ = –40°C to 125°C 10
VFB Feedback voltage TJ = 25°C 1.26 V
TJ = –40°C to 125°C 1.23 1.29
ICL Switch current limit VIN = 2.7 V(3) TJ = 25°C 1.9 A
TJ = –40°C to 125°C 1.35 2.4
%VFB/ΔVIN Feedback voltage line regulation 2.2 V ≤ VIN ≤ 12 V TJ = 25°C 0.013% V
TJ = –40°C to 125°C 0.1%
IB FB pin bias current(4) TJ = 25°C 0.5 nA
TJ = –40°C to 125°C 20
VIN Input voltage range TJ = –40°C to 125°C 2.2 12 V
gm Error amp transconductance ΔI = 5 µA TJ = 25°C 135 µmho
TJ = –40°C to 125°C 40 290
AV Error amp voltage gain 120 V/V
DMAX Maximum duty cycle FSLCT = Ground TJ = 25°C 85%
TJ = –40°C to 125°C 78%
DMIN Minimum duty cycle FSLCT = Ground 15%
FSLCT = VIN 30%
fS Switching frequency FSLCT = Ground TJ = 25°C 600 kHz
TJ = –40°C to 125°C 480 720
FSLCT = VIN TJ = 25°C 1.25 MHz
TJ = –40°C to 125°C 1 1.5
ISHDN Shutdown pin current VSHDN = VIN TJ = 25°C 0.01 µA
TJ = –40°C to 125°C 0.1
VSHDN = 0 V TJ = 25°C –0.5
TJ = –40°C to 125°C –1
IL Switch leakage current VSW = 18 V TJ = 25°C 0.01 µA
TJ = –40°C to 125°C 3
RDS(ON) Switch RDS(ON) VIN = 2.7 V, ISW = 1 A TJ = 25°C 0.2 Ω
TJ = –40°C to 125°C 0.4
THSHDN SHDN threshold voltage Output high TJ = 25°C 0.6 V
TJ = –40°C to 125°C 0.9
Output low TJ = 25°C 0.6
TJ = –40°C to 125°C 0.3
UVP On threshold TJ = 25°C 2.05 V
TJ = –40°C to 125°C 1.95 2.2
Off threshold TJ = 25°C 1.95 V
TJ = –40°C to 125°C 1.85 2.1
(1) All limits are specified at room temperature and at temperature extremes. All room temperature limits are 100% tested or specified through statistical analysis. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at 25°C and represent the most likely norm.
(3) This is the switch current limit at 0% duty cycle. The switch current limit changes as a function of duty cycle. See Typical Characteristics for ICL vs VIN.
(4) Bias current flows into FB pin.

6.6 Typical Characteristics

LM2698 20012667.png
VOUT = 8 V fS = 600 kHz
Figure 1. Efficiency vs Load Current
LM2698 20012618.gif
600 kHz Non-Switching
Figure 3. Iq vs VIN
LM2698 20012622.gif
1.25 MHz Non-Switching
Figure 5. Iq vs VIN
LM2698 20012616.gif Figure 7. Iq(SHDN) vs VIN
LM2698 20012620.gif Figure 9. Switching Frequency vs VIN (600 kHz)
LM2698 20012641.gif
VIN = 3.3 V VOUT = 8 V
Figure 11. ICL vs Ambient Temperature
LM2698 20012666.png
VOUT = 8 V fS = 1.25 MHz
Figure 2. Efficiency vs Load Current
LM2698 20012619.gif
600 kHz Switching
Figure 4. Iq vs VIN
LM2698 20012617.gif
1.25 MHz Switching
Figure 6. Iq vs VIN
LM2698 20012621.gif Figure 8. RDS(ON) vs VIN
LM2698 20012623.gif Figure 10. Switching Frequency vs VIN (1.25 MHz)
LM2698 20012642.gif
Figure 12. ICL vs VIN