SNIS144G July   2007  – September 2016 LM26LV , LM26LV-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings: LM26LV
    3. 6.3 ESD Ratings: LM26LV-Q1
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Electrical Characteristics
    7. 6.7 Switching Characteristics
    8. 6.8 Accuracy Characteristics
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 LM26LV and LM26LV-Q1 VTEMP vs Die Temperature Conversion Table
      2. 7.3.2 VTEMP vs Die Temperature Approximations
        1. 7.3.2.1 The Second-Order Equation (Parabolic)
        2. 7.3.2.2 The First-Order Approximation (Linear)
        3. 7.3.2.3 First-Order Approximation (Linear) Over Small Temperature Range
      3. 7.3.3 OVERTEMP and OVERTEMP Digital Outputs
        1. 7.3.3.1 OVERTEMP Open-Drain Digital Output
          1. 7.3.3.1.1 Determining the Pullup Resistor Value
            1. 7.3.3.1.1.1 Example Calculation
      4. 7.3.4 TRIP_TEST Digital Input
      5. 7.3.5 VTEMP Analog Temperature Sensor Output
        1. 7.3.5.1 Noise Considerations
        2. 7.3.5.2 Capacitive Loads
        3. 7.3.5.3 Voltage Shift
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 ADC Input Considerations
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
    1. 9.1 Power Supply Noise Immunity
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Mounting and Temperature Conductivity
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Related Links
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(3)
MIN MAX UNIT
Supply voltage –0.3 6 V
Voltage at OVERTEMP pin –0.3 6 V
Voltage at OVERTEMP and VTEMP pins –0.3 VDD + 0.5 V
TRIP_TEST input voltage –0.3 VDD + 0.5 V
Output current, any output pin –7 7 mA
Input current at any pin(2) 5 mA
Maximum junction temperature, TJ(MAX) 155 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) When the input voltage (VI) at any pin exceeds power supplies (VI < GND or VI > VDD), the current at that pin must be limited to 5 mA.
(3) For soldering specifications, see Absolute Maximum Ratings for Soldering.

6.2 ESD Ratings: LM26LV

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine model (MM)(3) ±300
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
(3) The machine model (MM) is a 200-pF capacitor charged to the specified voltage then discharged directly into each pin.

6.3 ESD Ratings: LM26LV-Q1

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±4500 V
Charged-device model (CDM), per AEC Q100-011 ±1000
Machine model (MM) ±300
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VDD Supply voltage 1.6 5.5 V
Supply current 8 µA
TA Specified ambient temperature –50 150 °C

6.5 Thermal Information

THERMAL METRIC(1) LM26LV and LM26LV-Q1 UNIT
NGF (WSON)
6 PINS
RθJA Junction-to-ambient thermal resistance 100.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 121.7 °C/W
RθJB Junction-to-board thermal resistance 70 °C/W
ψJT Junction-to-top characterization parameter 7.1 °C/W
ψJB Junction-to-board characterization parameter 70.3 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 15.9 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.6 Electrical Characteristics

Typical values apply for TA = TJ = 25°C; minimum and maximum limits apply for TA = TJ = –50°C to 150°C,
VDD = 1.6 V to 5.5 V (unless otherwise noted).(1)(2)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
GENERAL SPECIFICATIONS
IS Quiescent power supply current 8 16 µA
Hysteresis 4.5 5 5.5 °C
OVERTEMP DIGITAL OUTPUT—ACTIVE HIGH, PUSH-PULL
VOH Logic High output voltage VDD ≥ 1.6 V, Source ≤ 340 µA VDD – 0.2 V
VDD ≥ 2 V, Source ≤ 498 µA VDD – 0.2
VDD ≥ 3.3 V, Source ≤ 780 µA VDD – 0.2
VDD ≥ 1.6 V, Source ≤ 600 µA VDD – 0.45
VDD ≥ 2 V, Source ≤ 980 µA VDD – 0.45
VDD ≥ 3.3 V, Source ≤ 1.6 mA VDD – 0.45
BOTH OVERTEMP AND OVERTEMP DIGITAL OUTPUTS
VOL Logic Low output voltage VDD ≥ 1.6 V, Source ≤ 385 µA 0.2 V
VDD ≥ 2 V, Source ≤ 500 µA 0.2
VDD ≥ 3.3 V, Source ≤ 730 µA 0.2
VDD ≥ 1.6 V, Source ≤ 690 µA 0.45
VDD ≥ 2 V, Source ≤ 1.05 mA 0.45
VDD ≥ 3.3 V, Source ≤ 1.62 mA 0.45
OVERTEMP DIGITAL OUTPUT—ACTIVE LOW, OPEN DRAIN
IOH Logic High output leakage current(3) TA = 30°C 0.001 1 µA
TA = 150°C 0.025 1
VTEMP ANALOG TEMPERATURE SENSOR OUTPUT
VTEMP sensor gain Gain 1 (trip point = 0°C to 69°C) –5.1 mV/°C
Gain 2 (trip point = 70°C to 109°C) –7.7
Gain 3 (trip point = 110°C to 129°C) –10.3
Gain 4 (trip point = 130°C to 150°C) –12.8
VTEMP load regulation(4) 1.6 V ≤ VDD < 1.8 V Source ≤ 90 µA,
VDD – VTEMP ≥ 200 mV
–1 –0.1 mV
Sink ≤ 100 µA, VTEMP ≥ 260 mV 0.1 1
VDD ≥ 1.8 V Source ≤ 120 µA,
VDD – VTEMP ≥ 200 mV
–1 –0.1
Sink ≤ 200 µA, VTEMP ≥ 260 mV 0.1 1
Source or sink = 100 µA 1 Ω
Supply to VTEMP DC line regulation(5) VDD = 1.6 V to 5.5 V 0.29 mV
74 µV/V
–82 dB
CL VTEMP output load capacitance Without series resistor. See Capacitive Loads. 1100 pF
TRIP_TEST DIGITAL INPUT
VIH Logic High threshold voltage VDD – 0.5 V
VIL Logic Low threshold voltage 0.5
IIH Logic High input current 1.5 2.5 µA
IIL Logic Low input current(3) 0.001 1 µA
(1) Limits are specified to TI's AOQL (Average Outgoing Quality Level).
(2) Typical values apply for TJ = TA = 25°C and represent most likely parametric norm.
(3) The 1-µA limit is based on a testing limitation and does not reflect the actual performance of the part. Expect to see a doubling of the current for every 15°C increase in temperature. For example, the 1-nA typical current at 25°C would increase to 16 nA at 85°C.
(4) Source currents are flowing out of the LM26LV or LM26LV-Q1. Sink currents are flowing into the LM26LV or LM26LV-Q1.
(5) Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in Voltage Shift.

6.7 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tEN Time from power ON to digital output enabled(1) 1.1 2.3 ms
tVTEMP Time from power ON to analog temperature valid(1) CL = 0 pF to 1100 pF 1 2.9 ms
(1) Figure 1 and Figure 2 show the definitions of tEN and tVTEMP.

6.8 Accuracy Characteristics

See (1)
PARAMETER TEST CONDITIONS MIN MAX UNIT
TRIP POINT ACCURACY
Trip point accuracy(2) TA = 0°C to 150°C, VDD = 5 V –2.2 2.2 °C
VTEMP ANALOG TEMPERATURE SENSOR OUTPUT ACCURACY(3)
VTEMP temperature accuracy(2) Gain 1
trip point = 0°C to 69°C
TA = 20°C to 40°C, VDD = 1.6 V to 5.5 V –1.8 1.8 °C
TA = 0°C to 70°C, VDD = 1.6 V to 5.5 V –2 2
TA = 0°C to 90°C, VDD = 1.6 V to 5.5 V –2.1 2.1
TA = 0°C to 120°C, VDD = 1.6 V to 5.5 V –2.2 2.2
TA = 0°C to 150°C, VDD = 1.6 V to 5.5 V –2.3 2.3
TA = –50°C to 0°C, VDD = 1.7 V to 5.5 V –1.7 1.7
Gain 2
trip point = 70°C to 109°C
TA = 20°C to 40°C, VDD = 1.8 V to 5.5 V –1.8 1.8
TA = 0°C to 70°C, VDD = 1.9 V to 5.5 V –2 2
TA = 0°C to 90°C, VDD = 1.9 V to 5.5 V –2.1 2.1
TA = 0°C to 120°C, VDD = 1.9 V to 5.5 V –2.2 2.2
TA = 0°C to 150°C, VDD = 1.9 V to 5.5 V –2.3 2.3
TA = –50°C to 0°C, VDD = 2.3 V to 5.5 V –1.7 1.7
Gain 3
trip point = 110°C to 129°C
TA = 20°C to 40°C, VDD = 2.3 V to 5.5 V –1.8 1.8
TA = 0°C to 70°C, VDD = 2.5 V to 5.5 V –2 2
TA = 0°C to 90°C, VDD = 2.5 V to 5.5 V –2.1 2.1
TA = 0°C to 120°C, VDD = 2.5 V to 5.5 V –2.2 2.2
TA = 0°C to 150°C, VDD = 2.5 V to 5.5 V –2.3 2.3
TA = –50°C to 0°C, VDD = 3 V to 5.5 V –1.7 1.7
Gain 4
trip point = 130°C to 150°C
TA = 20°C to 40°C, VDD = 2.7 V to 5.5 V –1.8 1.8
TA = 0°C to 70°C, VDD = 3 V to 5.5 V –2 2
TA = 0°C to 90°C, VDD = 3 V to 5.5 V –2.1 2.1
TA = 0°C to 120°C, VDD = 3 V to 5.5 V –2.2 2.2
TA = 0°C to 150°C, VDD = 3 V to 5.5 V –2.3 2.3
TA = –50°C to 0°C, VDD = 3.6 V to 5.5 V –1.7 1.7
(1) Limits are specified to TI's AOQL (Average Outgoing Quality Level).
(2) Accuracy is defined as the error between the measured and reference output voltages, tabulated in Table 1 at the specified conditions of supply gain setting, voltage, and temperature (°C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.
(3) Changes in output due to self heating can be computed by multiplying the internal dissipation by the temperature thermal resistance.
LM26LV LM26LV-Q1 20204750.gif Figure 1. Definition of tEN
LM26LV LM26LV-Q1 20204751.gif Figure 2. Definition of tVTEMP

6.9 Typical Characteristics

LM26LV LM26LV-Q1 20204707.png Figure 3. VTEMP Output Temperature Error vs Temperature
LM26LV LM26LV-Q1 20204704.png Figure 5. Supply Current vs Temperature
LM26LV LM26LV-Q1 20204740.gif
100-mV overhead TA = 80°C Sourcing current
Figure 7. Load Regulation (1)
(1)The curves shown represent typical performance under worst-case conditions. Performance improves with larger VTEMP, larger VDD, and lower temperatures.
LM26LV LM26LV-Q1 20204747.gif
400-mV overhead TA = 80°C Sourcing current
Figure 9. Load Regulation(1)
LM26LV LM26LV-Q1 20204741.png
VDD = 1.6 V Sinking Current
Figure 11. Load Regulation(1)
LM26LV LM26LV-Q1 20204745.png
VDD = 2.4 V Sinking Current
Figure 13. Load Regulation(1)
LM26LV LM26LV-Q1 20204743.png
Figure 15. VTEMP Supply-Noise Rejection vs Frequency
LM26LV LM26LV-Q1 20204735.png
Gain 2 (Trip Points = 70°C to 109°C)
Figure 17. Line Regulation VTEMP vs Supply Voltage
LM26LV LM26LV-Q1 20204737.png
Gain 4 (Trip Points = 130°C to 150°C)
Figure 19. Line Regulation VTEMP vs Supply Voltage
LM26LV LM26LV-Q1 20204706.png Figure 4. Minimum Operating Temperature
vs Supply Voltage
LM26LV LM26LV-Q1 20204705.png Figure 6. Supply Current vs Supply Voltage
LM26LV LM26LV-Q1 20204746.gif
200-mV overhead TA = 80°C Sourcing Current
Figure 8. Load Regulation(1)
LM26LV LM26LV-Q1 20204748.gif
1.72-V overhead    TA = 150°C VDD = 2.4 V    Sourcing current
Figure 10. Load Regulation(1)
LM26LV LM26LV-Q1 20204744.png
VDD = 1.8 V Sinking Current
Figure 12. Load Regulation(1)
LM26LV LM26LV-Q1 20204742.png
Figure 14. Change in VTEMP vs Overhead Voltage
LM26LV LM26LV-Q1 20204734.png
Gain 1 (Trip Points = 0°C tp 69°C)
Figure 16. Line Regulation VTEMP vs Supply Voltage
LM26LV LM26LV-Q1 20204736.png
Gain 3 (Trip Points = 110°C to 129°C)
Figure 18. Line Regulation VTEMP vs Supply Voltage