SNVS209G November   2002  – May 2019 LM2733

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application Circuit
      2.      Efficiency vs. Load Current
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Switching Frequency
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Pin Operation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Selecting the External Capacitors
        2. 8.2.2.2  Selecting the Output Capacitor
        3. 8.2.2.3  Selecting the Input Capacitor
        4. 8.2.2.4  Feedforward Compensation
        5. 8.2.2.5  Selecting Diodes
        6. 8.2.2.6  Setting the Output Voltage
        7. 8.2.2.7  Switching Frequency
        8. 8.2.2.8  Duty Cycle
        9. 8.2.2.9  Inductance Value
        10. 8.2.2.10 Maximum Switch Current
        11. 8.2.2.11 Calculating Load Current
        12. 8.2.2.12 Design Parameters VSW and ISW
        13. 8.2.2.13 Thermal Considerations
        14. 8.2.2.14 Minimum Inductance
        15. 8.2.2.15 Inductor Suppliers
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

Unless otherwise specified: VIN = 5 V, VSHDN = 5 V, IL = 0 A, TJ = 25°C.
PARAMETER TEST CONDITIONS MIN(3) TYP(4) MAX(3) UNIT
VIN Input voltage −40°C ≤ TJ ≤ +125°C 2.7 14 V
ISW Switch current limit See(5) 1 1.5 A
RDS(ON) Switch ON resistance ISW = 100 mA 500 650 mΩ
SHDNTH Shutdown threshold Device ON, −40°C ≤ TJ ≤ +125°C 1.5 V
Device OFF, −40°C ≤ TJ ≤ +125°C 0.50
ISHDN Shutdown pin bias current VSHDN = 0 0 µA
VSHDN = 5 V 0
VSHDN = 5 V, −40°C ≤ TJ ≤ +125°C 2
VFB Feedback pin reference voltage VIN = 3 V 1.230 V
VIN = 3 V, −40°C ≤ TJ ≤ +125°C 1.205 1.255
IFB Feedback pin bias current VFB = 1.23 V 60 nA
IQ Quiescent current VSHDN = 5 V, Switching "X" 2.1 mA
VSHDN = 5 V, Switching "X", −40°C ≤ TJ ≤ +125°C 3
VSHDN = 5 V, Switching "Y" 1.1
VSHDN = 5 V, Switching "Y", −40°C ≤ TJ ≤ +125°C 2
VSHDN = 5 V, Not Switching 400 µA
VSHDN = 5 V, Not Switching, −40°C ≤ TJ ≤ +125°C 500
VSHDN = 0 0.024 1
Δ VFBΔVIN FB voltage line regulation 2.7 V ≤ VIN ≤ 14 V 0.02 %/V
FSW Switching frequency “X” Option 1.6 MHz
“X” Option, −40°C ≤ TJ ≤ +125°C 1.15 1.85
“Y” Option 0.60
“Y” Option, −40°C ≤ TJ ≤ +125°C 0.40 0.8
DMAX Maximum duty cycle “X” Option 93%
“X” Option, −40°C ≤ TJ ≤ +125°C 87%
“Y” Option 96%
“Y” Option, −40°C ≤ TJ ≤ +125°C 93%
IL Switch leakage Not Switching VSW = 5 V 1 µA
Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of the limits set forth under the operating ratings which specify the intended range of operating conditions.
The maximum power dissipation which can be safely dissipated for any application is a function of the maximum junction temperature, TJ(MAX) = 125°C, the junction-to-ambient thermal resistance for the SOT-23 package, RθJ-A = 210°C/W, and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature for designs using this device can be calculated using the formula:LM2733 20055404.pngIf power dissipation exceeds the maximum specified above, the internal thermal protection circuitry protects the device by reducing the output voltage as required to maintain a safe junction temperature.
Limits are specified by testing, statistical correlation, or design.
Typical values are derived from the mean value of a large quantity of samples tested during characterization and represent the most likely expected value of the parameter at room temperature.
Switch current limit is dependent on duty cycle (see Typical Characteristics). Limits shown are for duty cycles ≤ 50%.