SNVS497F November   2008  – September 2016 LM27341 , LM27341-Q1 , LM27342 , LM27342-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Boost Function
      2. 7.3.2 Low Input Voltage Considerations
      3. 7.3.3 High Output Voltage Considerations
      4. 7.3.4 Frequency Synchronization
      5. 7.3.5 Current Limit
      6. 7.3.6 Frequency Foldback
      7. 7.3.7 Output Overvoltage Protection
      8. 7.3.8 Undervoltage Lockout
      9. 7.3.9 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Enable Pin and Shutdown Mode
      2. 7.4.2 Soft-Start Mode
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Inductor Selection
        1. 8.1.1.1 Inductor Calculation Example
      2. 8.1.2  Inductor Material Selection
      3. 8.1.3  Input Capacitor
      4. 8.1.4  Output Capacitor
      5. 8.1.5  Catch Diode
      6. 8.1.6  Boost Diode (Optional)
      7. 8.1.7  Boost Capacitor
      8. 8.1.8  Output Voltage
      9. 8.1.9  Feedforward Capacitor (Optional)
      10. 8.1.10 Calculating Efficiency and Junction Temperature
        1. 8.1.10.1 Schottky Diode Conduction Losses
        2. 8.1.10.2 Inductor Conduction Losses
        3. 8.1.10.3 MOSFET Conduction Losses
        4. 8.1.10.4 MOSFET Switching Losses
        5. 8.1.10.5 IC Quiescent Losses
        6. 8.1.10.6 MOSFET Driver Losses
        7. 8.1.10.7 Total Power Losses
        8. 8.1.10.8 Efficiency Calculation Example
        9. 8.1.10.9 Calculating Junction Temperature
          1. 8.1.10.9.1 Conduction
          2. 8.1.10.9.2 Convection
          3. 8.1.10.9.3 Method 1
          4. 8.1.10.9.4 Method 2
            1. 8.1.10.9.4.1 Method 2 Example
          5. 8.1.10.9.5 Method 3
            1. 8.1.10.9.5.1 Method 3 Example
    2. 8.2 Typical Applications
      1. 8.2.1 LM2734x Configuration From VIN = 7 V to 16 V, VOUT = 5 V For Full Load at 2 MHz
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 LM2734x Configuration From VIN = 7 V to 16 V, VOUT = 5 V For Full Load at 1 MHz
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
      3. 8.2.3 LM2734x Configuration From VIN = 5 V to 16 V, VOUT = 3.3 V For Full Load at 2 MHz
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curves
      4. 8.2.4 LM2734x Configuration From VIN = 5 V to 16 V, VOUT = 3.3 V For Full Load at 2 MHz With SYNC = GND
        1. 8.2.4.1 Design Requirements
        2. 8.2.4.2 Detailed Design Procedure
        3. 8.2.4.3 Application Curves
      5. 8.2.5 LM2734x Configuration From VIN = 5 V to 16 V, VOUT = 3.3 V For Full Load at 2 MHz With SYNC = 1 MHz
        1. 8.2.5.1 Design Requirements
        2. 8.2.5.2 Detailed Design Procedure
        3. 8.2.5.3 Application Curves
      6. 8.2.6 LM2734x Configuration From VIN = 3.3 V to 16 V, VOUT = 1.8 V For Full Load at 2 MHz With SYNC = 1 GND
        1. 8.2.6.1 Design Requirements
        2. 8.2.6.2 Detailed Design Procedure
        3. 8.2.6.3 Application Curves
      7. 8.2.7 LM2734x Configuration From VIN = 3.3 V to 16 V, VOUT = 1.8 V For Full Load at 2 MHz With SYNC = 1 MHz
        1. 8.2.7.1 Design Requirements
        2. 8.2.7.2 Detailed Design Procedure
        3. 8.2.7.3 Application Curves
      8. 8.2.8 LM2734x Configuration From VIN = 3.3 V to 9 V, VOUT = 1.2 V For Full Load at 2 MHz With SYNC = 2 MHz
        1. 8.2.8.1 Design Requirements
        2. 8.2.8.2 Detailed Design Procedure
        3. 8.2.8.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Compact Layout
      2. 10.1.2 Ground Plane and Shape Routing
      3. 10.1.3 FB Loop
      4. 10.1.4 PCB Summary
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Community Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.2 Documentation Support

11.3 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 16. Related Links

PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY
LM27341 Click here Click here Click here Click here Click here
LM27342 Click here Click here Click here Click here Click here
LM27341-Q1 Click here Click here Click here Click here Click here
LM27342-Q1 Click here Click here Click here Click here Click here

11.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.5 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

    TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
    Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.6 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.7 Electrostatic Discharge Caution

esds-image

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.8 Glossary

SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.