SNAS555D June   2000  – December 2016 LM2907-N , LM2917-N

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Differential Input
      2. 9.3.2 Configurable
      3. 9.3.3 Output Stage
    4. 9.4 Device Functional Modes
      1. 9.4.1 Grounded Input Devices (8-Pin LM2907 and LM2917)
      2. 9.4.2 Differential Input Devices (LM2907 and LM2917)
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Minimum Component Tachometer
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Choosing R1 and C1
          2. 10.2.1.2.2 Using Zener Regulated Options (LM2917)
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Other Application Circuits
        1. 10.2.2.1 Variable Reluctance Magnetic Pickup Buffer Circuits
        2. 10.2.2.2 Finger Touch or Contact Switch
        3. 10.2.2.3 Over-Speed Latch
        4. 10.2.2.4 Frequency Switch Applications
          1. 10.2.2.4.1 Application Curves
        5. 10.2.2.5 Anti-Skid Circuits
          1. 10.2.2.5.1 Select-Low Circuit
          2. 10.2.2.5.2 Select-High Circuit
          3. 10.2.2.5.3 Select-Average Circuit
        6. 10.2.2.6 Changing the Output Voltage for an Input Frequency of Zero
        7. 10.2.2.7 Changing Tachometer Gain Curve or Clamping the Minimum Output Voltage
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Related Links
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Community Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Supply voltage 28 V
Supply current (Zener options) 25 mA
Collector voltage 28 V
Differential input voltage Tachometer, op amp, and comparator 28 V
Input voltage Tachometer LM2907 (8), LM2917 (8) –28 28 V
LM2907 (14), LM2917 (14) 0 28
Op amp and comparator 0 28
Power dissipation LM29x7 (8) 1200 mW
LM29x7 (14) 1580
Soldering information PDIP package Soldering (10 s) 260 °C
SOIC package Vapor phase (60 s) 215
Infrared (15 s) 220
Operating temperature, TJ –40 85 °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JESD22-A114(1) ±1000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Input voltage LM2907 (8), LM2917 (8) –28 28 V
LM2907 (14), LM2917 (14) 0 28 V
Output sink current 50 mA

Thermal Information

THERMAL METRIC(1) LM2907, LM2917 UNIT
P (PDIP) D (SOIC) NFF (PDIP) D (SOIC)
8 PINS 8 PINS 14 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance 77.6 110 69.1 83.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 80.5 53.9 64.8 42.1 °C/W
RθJB Junction-to-board thermal resistance 54.8 50.4 49.1 38 °C/W
ψJT Junction-to-top characterization parameter 37.6 9.1 35.1 7.7 °C/W
ψJB Junction-to-board characterization parameter 54.8 49.9 49 37.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

VCC = 12 VDC, TA = 25°C, see test circuit
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TACHOMETER
Input thresholds VIN = 250 mVp-p at 1 kHz(1) ±10 ±25 ±40 mV
Hysteresis VIN = 250 mVp-p at 1 kHz(1) 30 mV
LM29x7 offset voltage VIN = 250 mVp-p at 1 kHz(1) 3.5 10 mV
VIN = 250 mVp-p at 1 kHz (8-pin LM29x7)(1) 5 15
Input bias current VIN = ±50 mVDC 0.1 1 μA
VOH High level output voltage For CP1, VIN = 125 mVDC(2) 8.3 V
VOL Low level output voltage For CP1, VIN = –125 mVDC(2) 2.3 V
I2, I3 Output current V2 = V3 = 6 V(3) 140 180 240 μA
I3 Leakage current I2 = 0, V3 = 0 0.1 μA
K Gain constant See(2) 0.9 1 1.1
Linearity fIN = 1 kHz, 5 kHz, or 10 kHz(4) –1% 0.3% 1%
OP AMP AND COMPARATOR
VOS Input offset voltage VIN = 6 V 3 10 mV
IBIAS Bias current VIN = 6 V 50 500 nA
Input common-mode voltage 0 VCC–1.5 V
Voltage gain 200 V/mV
Output sink current VC = 1 40 50 mA
Output source current VE = VCC –2 10 mA
Saturation voltage ISINK = 5 mA 0.1 0.5 V
ISINK = 20 mA 1 V
ISINK = 50 mA 1 1.5 V
ZENER REGULATOR
Regulator voltage RDROP = 470 Ω 7.56 V
Series resistance 10.5 15 Ω
Temperature stability 1 mV/°C
Total supply current 3.8 6 mA
Hysteresis is the sum VTH – (–VTH), offset voltage is their difference. See test circuit.
VOH = 0.75 × VCC – 1 VBE and VOL = 0.25 × VCC – 1 VBE, therefore VOH – VOL = VCC / 2. The difference (VOH – VOL) and the mirror gain (I2 / I3) are the two factors that cause the tachometer gain constant to vary from 1.
Ensure that when choosing the time constant R1 × C1 that the maximum anticipated output voltage at CP2/IN+ can be reached with I3 × R1. The maximum value for R1 is limited by the output resistance of CP2/IN+ which is greater than 10 MΩ typically.
Nonlinearity is defined as the deviation of VOUT (at CP2/IN+) for fIN = 5 kHz from a straight line defined by the VOUT at 1 kHz and VOUT at 10 kHz. C1 = 1000 pF, R1 = 68 kΩ and C2 = 0.22 µF.

Typical Characteristics

LM2907-N LM2917-N 794246.png Figure 1. Tachometer Linearity vs Temperature
LM2907-N LM2917-N 794240.png Figure 3. Total Supply Current
LM2907-N LM2917-N 794242.png Figure 5. Normalized Tachometer Output (K)
vs Temperature
LM2907-N LM2917-N 794244.png Figure 7. Tachometer Currents I2and I3 vs Supply Voltage
LM2907-N LM2917-N 794248.png Figure 9. Tachometer Linearity vs R1
LM2907-N LM2917-N 794250.png Figure 11. Op Amp Output Transistor Characteristics
LM2907-N LM2917-N 794247.png Figure 2. Tachometer Linearity vs Temperature
LM2907-N LM2917-N 794241.png Figure 4. Zener Voltage vs Temperature
LM2907-N LM2917-N 794243.png Figure 6. Normalized Tachometer Output (K)
vs Temperature
LM2907-N LM2917-N 794245.png Figure 8. Tachometer Currents I2and I3 vs Temperature
LM2907-N LM2917-N 794249.png Figure 10. Tachometer Input Hysteresis vs Temperature
LM2907-N LM2917-N 794251.png Figure 12. Op Amp Output Transistor Characteristics