SNVS602L March   2009  – June 2016 LM3409 , LM3409-Q1 , LM3409HV , LM3409HV-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Buck Current Regulators
      2. 8.3.2 Controlled Off-Time (COFT) Architecture
        1. 8.3.2.1 Adjustable Peak Current Control
        2. 8.3.2.2 Controlled Off-Time
      3. 8.3.3 Average LED Current
      4. 8.3.4 Inductor Current Ripple
      5. 8.3.5 Switching Frequency
      6. 8.3.6 PWM Dimming Using the EN Pin
      7. 8.3.7 High Voltage Negative BIAS Regulator
      8. 8.3.8 External Parallel FET PWM Dimming
    4. 8.4 Device Functional Modes
      1. 8.4.1 Low-Power Shutdown
      2. 8.4.2 Thermal Shutdown
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Input Undervoltage Lockout (UVLO)
      2. 9.1.2 Operation Near Dropout
      3. 9.1.3 LED Ripple Current
      4. 9.1.4 Buck Converters without Output Capacitors
      5. 9.1.5 Buck Converters With Output Capacitors
      6. 9.1.6 Output Overvoltage Protection
      7. 9.1.7 Input Capacitors
      8. 9.1.8 P-Channel MOSFET (PFET)
      9. 9.1.9 Re-Circulating Diode
    2. 9.2 Typical Applications
      1. 9.2.1 EN PIN PWM Dimming Application for 10 LEDs
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1  Nominal Switching Frequency
          2. 9.2.1.2.2  Inductor Ripple Current
          3. 9.2.1.2.3  Average LED Current
          4. 9.2.1.2.4  Output Capacitance
          5. 9.2.1.2.5  Input Capacitance
          6. 9.2.1.2.6  PFET
          7. 9.2.1.2.7  Diode
          8. 9.2.1.2.8  Input UVLO
          9. 9.2.1.2.9  IADJ Connection Method
          10. 9.2.1.2.10 PWM Dimming Method
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Analog Dimming Application for 4 LEDs
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1  Nominal Switching Frequency
          2. 9.2.2.2.2  Inductor Ripple Current
          3. 9.2.2.2.3  Average LED Current
          4. 9.2.2.2.4  Output Capacitance
          5. 9.2.2.2.5  Input Capacitance
          6. 9.2.2.2.6  PFET
          7. 9.2.2.2.7  Diode
          8. 9.2.2.2.8  Input UVLO
          9. 9.2.2.2.9  IADJ Connection Method
          10. 9.2.2.2.10 PWM Dimming Method
        3. 9.2.2.3 Application Curve
      3. 9.2.3 LM3409 Buck Converter Application
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
          1. 9.2.3.2.1  Nominal Switching Frequency
          2. 9.2.3.2.2  Inductor Ripple Current
          3. 9.2.3.2.3  Average LED Current
          4. 9.2.3.2.4  Output Capacitance
          5. 9.2.3.2.5  Input Capacitance
          6. 9.2.3.2.6  PFET
          7. 9.2.3.2.7  Diode
          8. 9.2.3.2.8  Input UVLO
          9. 9.2.3.2.9  IADJ Connection Method
          10. 9.2.3.2.10 PWM Dimming Method
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Related Links
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 3. Related Links

PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY
LM3409 Click here Click here Click here Click here Click here
LM3409-Q1 Click here Click here Click here Click here Click here
LM3409HV Click here Click here Click here Click here Click here
LM3409HV-Q1 Click here Click here Click here Click here Click here

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

    TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
    Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

esds-image

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.