SNVS797B March   2012  – October 2015 LM3492HC , LM3492HC-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Switching Frequency
      2. 8.3.2  LDO Regulator
      3. 8.3.3  Enable and Disable
      4. 8.3.4  Current Limit
      5. 8.3.5  Thermal Protection
      6. 8.3.6  Dynamic Headroom Control, Over-Ride, and Soft-Start
      7. 8.3.7  Current Regulator
      8. 8.3.8  Output Voltage Feedback
      9. 8.3.9  Overvoltage Protection
      10. 8.3.10 Bidirectional Communication Pin
        1. 8.3.10.1 Power-Good Indication
        2. 8.3.10.2 Overtemperature Indication
        3. 8.3.10.3 Output Current Undervoltage Indication
        4. 8.3.10.4 Switching Frequency Tuning
    4. 8.4 Device Functional Modes
    5. 8.5 Programming
      1. 8.5.1 Output Current Overvoltage Indication
      2. 8.5.2 COMM Pin Bit Pattern
      3. 8.5.3 Channel 1 Disable
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 RFB1, RFB2, and CFB
        2. 9.2.1.2 L1
        3. 9.2.1.3 D1
        4. 9.2.1.4 CIN and COUT
        5. 9.2.1.5 CVCC
        6. 9.2.1.6 CCDHC
        7. 9.2.1.7 RRT and RIREF
        8. 9.2.1.8 RCOMM
      2. 9.2.2 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Input voltage VIN, RT, VOUT to GND, SW to GND −0.3 67 V
SW to GND (transient <100 ns) −2
Output voltage ILIM to GND −0.3 1 V
FB to GND −0.3 5
COMM, DIM1, DIM2, to GND −0.3 6
Junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±750
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2000 V may actually have higher performance.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±750 V may actually have higher performance.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply input voltage, VIN 4.5 65 V
Junction temperature, TJ −40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) LM3492HC UNIT
PWP
(HTSSOP)
20 PINS
RθJA Junction-to-ambient thermal resistance 36.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 21.8 °C/W
RθJB Junction-to-board thermal resistance 18.3 °C/W
ψJT Junction-to-top characterization parameter 0.6 °C/W
ψJB Junction-to-board characterization parameter 18.1 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

over operating free-air temperature range, VIN = 12 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
START-UP REGULATOR (VCC PIN)
VVCC Output voltage CVCC = 0.47 µF, no load 4.7 5.5 6.3 V
IVCC = 2 mA 4.7 5.5 6.3 V
VCC_UVLO VCC pin undervoltage lockout threshold (UVLO) VVCC increasing, TA = TJ = 25°C 3.56 3.78 4 V
VCC_UVLO-HYS VCC pin UVLO hysteresis VVCC decreasing, TA = TJ = 25°C 310 mV
IIN IIN operating current No switching, VFB = 0 V 3.6 5.2 mA
IIN-SD IIN operating current, device shutdown VEN = 0 V 30 95 µA
IVCC VCC pin current limit (1) VVCC = 0 V 18 30 mA
VCC-VOUT VCC pin output voltage when supplied by VOUT VIN = Open, IVCC = 1 mA,
VOUT = 18 V
3.5 4.1 4.7 V
ENABLE INPUT
VEN EN pin input threshold VEN rising 1.55 1.63 1.71 V
VEN-HYS EN pin threshold hysteresis VEN falling 194 mV
IEN-SHUT Enable pullup current at shutdown VEN = 0 V 2 µA
IEN-OPER Enable pullup current during operation VEN = 2 V 40 µA
CURRENT REGULATOR
VIREF IREF pin voltage 4.5 V ≤ VIN ≤ 65 V 1.231 1.256 1.281 V
VDHC50 VIOUT under DHC IOUT = 50 mA, RIREF = 25 kΩ 0.160 0.225 0.290 V
VDHC100 IOUT = 100 mA, RIREF = 12.5 kΩ 0.38 0.48 0.58
VDHC200 IOUT = 200 mA, RIREF = 6.25 kΩ 0.81 0.99 1.17
VDHC250 IOUT = 250 mA, RIREF = 5 kΩ 0.81 1.21 1.44
IOUT50 Current output under DHC VIOUT = VDHC50, RIREF = 25 kΩ,
TA = TJ = 25°C
47.5 50 52.5 mA
VIOUT = VDHC50, RIREF = 25 kΩ 46.5 50 53.5
IOUT100 VIOUT = VDHC100, RIREF = 12.5 kΩ,
TA = TJ = 25°C
97 100 103
VIOUT = VDHC100, RIREF = 12.5 kΩ 96 100 104
IOUT200 VIOUT = VDHC200, RIREF = 6.25 kΩ,
TA = TJ = 25°C
194 200 206
VIOUT = VDHC200, RIREF = 6.25 kΩ 192 200 208
IOUT250 VIOUT = VDHC250, RIREF = 5 kΩ,
TA = TJ = 25°C
241.3 250 258.8
VIOUT = VDHC250, RIREF = 5 kΩ 238 250 262
IOUTOFF Leakage at maximum work voltage VDIM = 0, VIOUT = 65 V 5 µA
VIOUT50-MIN Minimum work voltage IOUT = 50 mA, RIREF = 25 kΩ,
IOUT = 0.98 × IOUT50, TA = TJ = 25°C
0.1 0.15 V
VIOUT100-MIN IOUT = 100 mA, RIREF = 12.5 kΩ, IOUT = 0.98 × IOUT100,
TA = TJ = 25°C
0.2 0.35
VIOUT200-MIN IOUT = 200 mA, RIREF = 6.25 kΩ, IOUT = 0.98 × IOUT200,
TA = TJ = 25°C
0.4 0.65
VIOUT250-MIN IOUT = 250 mA, RIREF = 5 kΩ,
IOUT = 0.98 × IOUT250, TA = TJ = 25°C
0.5 0.82
VDIM-HIGH DIM voltage HIGH 1.17 V
VDIM-LOW DIM voltage LOW 0.7 V
BOOST CONVERTER
ICDHC-SRC CDHC pin source current VCDHC = 1.6 V, VFB = 3 V,
VIOUT = 0 V, DIM = High
60 µA
ICDHC-SINK CDHC pin sink current VCDHC = 1.6 V, VFB = 3 V,
VIOUT = 3 V, DIM = High
56 µA
ICDHC-PULLUP CDHC pin pullup current DIM = Low, VCDHC = 2.3 V,
VFB = 3 V
10 200 500 nA
ICL-MAX Integrated MOSFET peak current limit threshold 3.3 3.9 4.5 A
ICL-HALF Half integrated MOSFET peak current limit threshold RILIM = 11 kΩ 2 A
RDS(on) Integrated MOSFET On-resistance ISW = 500 mA 0.19 0.43 Ω
VFBTH-PWRGD Power-Good FB pin threshold 2.25 V
VFB-OVP FB pin overvoltage protection threshold FB pin OVP hysteresis VFB rising, VCDHC = 4 V 2.64 2.76 2.88 V
VFB falling 0.1 0.215 0.323
IFB Feedback pin input current VFB = 3 V 1 µA
tON ON timer pulse width VIN = 12 V, VOUT = 65V,
RRT = 300 kΩ
1460 ns
VIN = 24 V, VOUT = 32.5V,
RRT = 300 kΩ
800
VIN = 12 V, VOUT = 65V,
RRT = 100 kΩ
550
VIN = 24 V, VOUT = 32.5V,
RRT = 100 kΩ
350
tON(min)ILIM ON timer minimum pulse width at current limit 145 ns
tOFF OFF timer pulse width 145 350 ns
COMM PIN
VIOUT-OV IOUT pin overvoltage threshold COMM goes LOW during VIOUT rising, other VIOUT = 1.2 V 5.6 6.7 7.8 V
VCOMM-LOW COMM pin at LOW 5 mA into COMM 0.7 V
ILEAK-FAULT COMM pin open leakage VCOMM = 5 V 5 µA
THERMAL PROTECTION
TOTM Overtemperature indication TJ rising 135 °C
TOTM-HYS Over-temperature indication hysteresis TJ falling 15 °C
TSD Thermal shutdown temperature TJ rising 165 °C
TSD-HYS Thermal shutdown temperature hysteresis TJ falling 20 °C
(1) The VCC pin provides self bias for the internal gate drive and control circuits. Device thermal limitations limit external loading.

7.6 Typical Characteristics

Unless otherwise specified the following conditions apply: TJ = 25°C, VIN = 12 V with configuration in typical application circuit for ILED = 250 mA shown in this data sheet.
LM3492HC-Q1 LM3492HC 30170511.png
Figure 1. Quiescent Current vs Input Voltage
LM3492HC-Q1 LM3492HC 30170513.png
Figure 3. VCC Voltage vs Input Voltage
LM3492HC-Q1 LM3492HC 30170515.png
Figure 5. LED Current Regulation vs Temperature
LM3492HC-Q1 LM3492HC 30170532.gif
ILED = 0.25 A
Figure 7. Efficiency vs Input Voltage
LM3492HC-Q1 LM3492HC 30170534.png
ILED = 0.25 A
Figure 9. Power-Up Waveform
LM3492HC-Q1 LM3492HC 30170536.png
Figure 11. Steady-State Operation
LM3492HC-Q1 LM3492HC 30170538.png
ILED = 0.25 A Dimming frequency = 200 Hz
Figure 13. 1000:1 LED Dimming Waveforms
LM3492HC-Q1 LM3492HC D004_SLUSC65.gif
ILED = 0.15 A RRT = 178 kΩ
Figure 15. Switching Frequency vs Input Voltage
LM3492HC-Q1 LM3492HC D006_SLUSC65.gif
ILED = 0.15 A RRT = 178 kΩ
Figure 17. Switching Frequency vs Output Voltage
LM3492HC-Q1 LM3492HC 30170512.png
Figure 2. VCC Voltage vs VCC Ouput Current
LM3492HC-Q1 LM3492HC 30170514.png
Figure 4. Switching Frequency vs Input Voltage
LM3492HC-Q1 LM3492HC 30170516.png
Figure 6. MOSFET On-Resistance vs Temperature
LM3492HC-Q1 LM3492HC 30170533.gif
ILED = 0.25 A
Figure 8. LED Current Regulation vs Input Voltage
LM3492HC-Q1 LM3492HC 30170535.png
ILED = 0.25 A
Figure 10. Enable Transient Waveform
LM3492HC-Q1 LM3492HC 30170537.png
ILED = 0.25 A Dimming frequency = 200 Hz
Figure 12. LED 50% Dimming Waveforms
LM3492HC-Q1 LM3492HC 30170539.png
ILED = 0.25 A Dimming frequency = 200 Hz
Figure 14. 10000:1 LED Dimming Waveforms
LM3492HC-Q1 LM3492HC D005_SLUSC65.gif
ILED = 0.15 A RRT = 499 kΩ
Figure 16. Switching Frequency vs Input Voltage
LM3492HC-Q1 LM3492HC D007_SLUSC65.gif
ILED = 0.15 A RRT = 499 kΩ
Figure 18. Switching Frequency vs Output Voltage