SNVSCV4 September   2024 LM3645

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Switching Characteristics
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power Amplifier Synchronization (TORCH/TX)
      2. 6.3.2 Input Voltage Flash Monitor (IVFM)
      3. 6.3.3 Fault/Protections
        1. 6.3.3.1  Fault Operation
        2. 6.3.3.2  Flash Time-Out
        3. 6.3.3.3  Overvoltage Protection (OVP)
        4. 6.3.3.4  Current Limit
        5. 6.3.3.5  NTC Thermistor Input/Outputs (TEMP1, TEMP2)
        6. 6.3.3.6  Thermal Scale Back
        7. 6.3.3.7  Thermal Shutdown (TSD)
        8. 6.3.3.8  Undervoltage Lockout (UVLO)
        9. 6.3.3.9  LED and/or VOUT Short Fault
        10. 6.3.3.10 Fault Behavior Table
    4. 6.4 Device Functioning Modes
      1. 6.4.1 Flash Mode
      2. 6.4.2 Torch Mode
      3. 6.4.3 IR Mode
      4. 6.4.4 Voltage Mode
      5. 6.4.5 Mode Transitions
      6. 6.4.6 Boost Operation
        1. 6.4.6.1 Start-Up (Enabling The Device)
        2. 6.4.6.2 Pass Mode
        3. 6.4.6.3 Output Voltage Regulation
    5. 6.5 Programming and Control
      1. 6.5.1 Dx_EN Bits
      2. 6.5.2 STR1 and STR2 Usage
      3. 6.5.3 TOR/TX Usage
      4. 6.5.4 Control State Diagram
      5. 6.5.5 I2C-Compatible Interface
        1. 6.5.5.1 Data Validity
        2. 6.5.5.2 Start and Stop Conditions
        3. 6.5.5.3 Transferring Data
        4. 6.5.5.4 I2C-Compatible Chip Address
    6. 6.6 Register Descriptions
      1. 6.6.1 MainReg Registers
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Output Control Examples
        1. 7.2.2.1 Four Channel Flash with Strobe1 Trigger Starting in Standby
        2. 7.2.2.2 Four Channel Flash with Strobe1 Trigger Starting in I2C Torch
        3. 7.2.2.3 Mixed Mode Functionality
        4. 7.2.2.4 Voltage Mode Only
        5. 7.2.2.5 Voltage Mode With Advanced IR
      3. 7.2.3 Detailed Design Procedure
        1. 7.2.3.1 Snubber Requirement
        2. 7.2.3.2 Output Capacitor Selection
        3. 7.2.3.3 Input Capacitor Selection
        4. 7.2.3.4 Inductor Selection
      4. 7.2.4 Application Curves
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The LM3645 is a high-power white LED flash driver capable of delivering up to 2 A in any of the four parallel LEDs. The device incorporates a 2-MHz or 4-MHz constant frequency-synchronous current-mode PWM boost converter and quad high-side current sources to regulate the LED current over the 2.3-V to 5.5-V input voltage range.

The LM3645 PWM DC/DC boost converter switches and boosts the output to maintain at least VHR across each of the current sources (LED1/2/3/4). This minimum headroom voltage ensures that the current sources remain in regulation. If the input voltage is above the LED voltage + current source headroom voltage the device does not switch, but turns the P-channel MOSFET on continuously (Pass mode). In Pass mode the difference between (VIN − ILED × RPMOS) and the voltage across the LED is dropped across the current source.

The LM3645 has logic inputs including two hardware Flash Enables (STROBE1 and STROBE2), and a hardware Torch Enable muxed with a Flash Interrupt input (TX) designed to interrupt the flash pulse during high battery-current conditions (TORCH/Tx, Tx = default). These logic inputs have internal 300-kΩ (typical) pulldown resistors to GND.

Additional features of the LM3645 include internal comparators for LED thermal sensing via external NTC thermistors (TEMP1, TEMP2) and an input voltage monitor that can reduce the Flash current during low VIN conditions. It also has a Hardware Enable (EN) pin that can be used to reset the state of the device and the registers by pulling the EN pin to ground.

Control is done via an I2C-compatible interface. This includes adjustment of the Flash and Torch current levels, changing the Flash Timeout Duration, and changing the switch current limit. Additionally, there are flag and status bits that indicate flash current time-out, LED over-temperature condition, LED failure (open/short), device thermal shutdown, TX interrupt, and VIN undervoltage conditions.