SLVS023L January   1989  – February 2018 LM285-2.5 , LM385-2.5 , LM385B-2.5

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 System Examples
      1. 8.3.1 Thermocouple Cold-Junction Compensator
      2. 8.3.2 Generating Reference Voltage With a Constant Current Source
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related Links
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

TA = 25°C unless otherwise noted.
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
LM285-2.5
VZ Reference voltage IZ = 20 μA to 20 mA 2.462 2.5 2.538 V
αVZ Average temperature coefficient of reference voltage(2) IZ = 20 μA to 20 mA Full range(1) ±20 ppm/°C
ΔVZ Change in reference voltage with current IZ = 20 μA to 1 mA TA = 25°C 1 mV
Full range 1.5
IZ = 1 mA to 20 mA TA = 25°C 10
Full range 30
ΔVZ/Δt Long-term change in reference voltage IZ = 100 μA ±20 ppm/khr
IZ(MIN) Minimum reference current Full range 8 20 µA
zz Reference impedance IZ = 100 µA TA = 25°C 0.2 0.6 Ω
Full range 1.5
Vn Broadband noise voltage IZ = 100 μA, f = 10 Hz to 10 kHz 120 µV
LM385-2.5
VZ Reference voltage IZ = 20 μA to 20 mA 2.425 2.5 2.575 V
αVZ Average temperature coefficient of reference voltage(2) IZ = 20 μA to 20 mA Full range(1) ±20 ppm/°C
ΔVZ Change in reference voltage with current IZ = 20 μA to 1 mA TA = 25°C 2 mV
Full range 2
IZ = 1 mA to 20 mA TA = 25°C 20
Full range 30
ΔVZ/Δt Long-term change in reference voltage IZ = 100 μA ±20 ppm/khr
IZ(MIN) Minimum reference current Full range 8 20 µA
zz Reference impedance IZ = 100 µA TA = 25°C 0.4 1 Ω
Full range 1.5
Vn Broadband noise voltage IZ = 100 μA, f = 10 Hz to 10 kHz 120 µV
LM385B-2.5
VZ Reference voltage IZ = 20 μA to 20 mA 2.462 2.5 2.538 V
αVZ Average temperature coefficient of reference voltage(2) IZ = 20 μA to 20 mA Full range(1) ±20 ppm/°C
ΔVZ Change in reference voltage with current IZ = 20 μA to 1 mA TA = 25°C 2 mV
Full range 2
IZ = 1 mA to 20 mA TA = 25°C 20
Full range 30
ΔVZ/Δt Long-term change in reference voltage IZ = 100 μA ±20 ppm/khr
IZ(MIN) Minimum reference current Full range 8 20 µA
zz Reference impedance IZ = 100 µA TA = 25°C 0.4 1 Ω
Full range 1.5
Vn Broadband noise voltage IZ = 100 μA, f = 10 Hz to 10 kHz 120 µV
Full range is 0°C to 70°C for the LM385-2.5 and LM385B-2.5, and −40°C to 85°C for the LM285-2.5.
The average temperature coefficient of reference voltage is defined as the total change in reference voltage divided by the specified temperature range.