SNVS049F February   2000  – March 2016 LM4120

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Enable
      2. 7.3.2 Reference
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input Capacitors
        2. 8.2.2.2 Output Capacitors
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Community Resources
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Maximum voltage on input or enable pins –0.3 14 V
Output short-circuit duraion Indefinite
Power dissipation (TA = 25°C) (2) 350 mW
Lead temperature Soldering, (10 sec.) 260 °C
Vapor Phase (60 sec.) 215 °C
Infrared (15 sec.) 220 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Without PCB copper enhancements. The maximum power dissipation must be derated at elevated temperatures and is limited by TJMAX (maximum junction temperature), RθJA (junction-to-ambient thermal resistance) and TA (ambient temperature). The maximum power dissipation at any temperature is: PDissMAX = (TJMAX – TA) / RθJA up to the value listed in the Absolute Maximum Ratings.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±750
Machine Model ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Ambient temperature –40 85 °C
Junction temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LM4120 UNIT
DBV [SOT-23]
5 PINS
RθJA Junction-to-ambient thermal resistance 170.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 123.9 °C/W
RθJB Junction-to-board thermal resistance 30.4 °C/W
ψJT Junction-to-top characterization parameter 17.2 °C/W
ψJB Junction-to-board characterization parameter 29.9 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

unless otherwise specified, VIN = 3.3 V, ILOAD = 0, COUT = 0.01 µF, TA = Tj = 25°C.
PARAMETER TEST CONDITIONS MIN (1) TYP (2) MAX (1) UNIT
1.8 V, 2.048 V, AND 2.5 V
VOUT Output voltage initial accuracy
LM4120A-1.800
LM4120A-2.048
LM4120A-2.500
±0.2%
LM4120-1.800
LM4120-2.048
LM4120-2.500
±0.5%
TCVOUT/°C Temperature coefficient –40°C ≤ TA ≤ +125°C 14 50 ppm/°c
ΔVOUT/ΔVIN Line regulation 3.3 V ≤ VIN ≤ 12 V 0.0007 0.008 %/V
–40°C ≤ TA ≤ 85°C 0.01
ΔVOUT/ΔILOAD Load regulation 0 mA ≤ ILOAD ≤ 1 mA 0.03 0.08 %/mA
–40°C ≤ TA ≤ 85°C 0.17
1 mA ≤ ILOAD ≤ 5 mA 0.01 0.04
–40°C ≤ TA ≤ 85°C 0.1
–1 mA ≤ ILOAD ≤ 0 mA 0.04 0.12
–5 mA ≤ ILOAD ≤ −1 mA 0.01
VIN−VOUT Dropout voltage (3) ILOAD = 0 mA 45 65 mV
–40°C ≤ TA ≤ 85°C 80
ILOAD = 1 mA 120 150
–40°C ≤ TA ≤ 85°C 180
ILOAD = 5 mA 180 210
–40°C ≤ TA ≤ 85°C 250
VN Output(4) 0.1 Hz to 10 Hz 20 µVPP
10 Hz to 10 kHz 36
IS Supply current 160 250 µA
–40°C ≤ TA ≤ 85°C 275
ISS Power-down supply current Enable = 0.4 V
–40°C ≤ TJ ≤ 85°C
Enable = 0.2 V
1 µA
–40°C ≤ TA ≤ 85°C 2
VH Logic high input voltage 2.4 V
–40°C ≤ TA ≤ 85°C 2.4
VL Logic low input voltage 0.4 V
–40°C ≤ TA ≤ 85°C 0.2
IH Logic high input current 7 µA
–40°C ≤ TA ≤ 85°C 15
IL Logic low input current 0.1 µA
ISC Short circuit current VIN = 3.3 V, VOUT = 0 15 mA
–40°C ≤ TA ≤ 85°C 6 30
VIN = 12 V, VOUT = 0 17
–40°C ≤ TA ≤ 85°C 6 30
Hyst Thermal hysteresis (5) –40°C ≤ TA ≤ 125°C 0.5 mV/V
ΔVOUT Long term stability (6) 1000 hrs @ 25°C 100 ppm
3 V, 3.3 V, 4.096 V, AND 5 V
VOUT Output voltage initial accuracy
LM4120A-3.000
LM4120A-3.300
LM4120A-4.096
LM4120A-5.000
±0.2%
LM4120-3.000
LM4120-3.300
LM4120-4.096
LM4120-5.000
±0.5%
TCVOUT/°C Temperature coefficient –40°C ≤ TA ≤ 125°C 14 50 ppm/°c
ΔVOUT/ΔVIN Line regulation (VOUT + 1 V) ≤ VIN ≤ 12 V 0.0007 0.008 %/V
–40°C ≤ TA ≤ 85°C 0.01
ΔVOUT/ΔILOAD Load regulation 0 mA ≤ ILOAD ≤ 1 mA 0.03 0.08 %/mA
–40°C ≤ TA ≤ 85°C 0.17
1 mA ≤ ILOAD ≤ 5 mA 0.01 0.04
–40°C ≤ TA ≤ 85°C 0.1
–1 mA ≤ ILOAD ≤ 0 mA 0.04 0.12
–5 mA ≤ ILOAD ≤ –1 mA 0.01
VIN−VOUT Dropout voltage (3) ILOAD = 0 mA 45 65 mV
–40°C ≤ TA ≤ 85°C 80
ILOAD = 1 mA 120 150
–40°C ≤ TA ≤ 85°C 180
ILOAD = 5 mA 180 210
–40°C ≤ TA ≤ 85°C 250
3 V, 3.3 V, 4.096 V, AND 5 V (continued)
VN Output noise voltage(4) 0.1 Hz to 10 Hz 20 µVPP
10 Hz to 10 kHz 36
IS Supply current 160 250 µA
–40°C ≤ TA ≤ 85°C 275
ISS Power-down supply current Enable = 0.4 V
–40°C ≤ TJ ≤ 85°C
Enable = 0.2 V
1 µA
–40°C ≤ TA ≤ 85°C 2
VH Logic high input voltage 2.4 V
–40°C ≤ TA ≤ 85°C 2.4
VL Logic low input voltage 0.4 V
–40°C ≤ TA ≤ 85°C 0.2
IH Logic high input current 7 µA
–40°C ≤ TA ≤ 85°C 15
IL Logic low input current 0.1 µA
ISC Short circuit current VOUT = 0 15 mA
–40°C ≤ TA ≤ 85°C 6 30
VIN = 12 V, VOUT = 0 17
–40°C ≤ TA ≤ 85°C 6 30
Hyst Thermal hysteresis (5) –40°C ≤ TA ≤ 125°C 0.5 mV/V
ΔVOUT Long term stability (6) 1000 hours @ 25°C 100 ppm
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate TI's Averaging Outgoing Quality Level (AOQL).
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(3) Dropout voltage is the differential voltage between VOUT and VIN at which VOUT changes ≤ 1% from VOUT at VIN = 3.3 V for 1.8 V, 2 V, 2.5 V, and VOUT + 1 V for others. For 1.8-V option, dropout voltage is not ensured over temperature. A parasitic diode exists between input and output pins; it will conduct if VOUT is pulled to a higher voltage than VIN.
(4) Output noise voltage is proportional to VOUT. VN for other voltage option is calculated using (VN(1.8 V) / 1.8) × VOUT.
VN (2.5 V) = (36 μVPP / 1.8) × 2.5 = 46 μVPP.
(5) Thermal hysteresis is defined as the change in 25°C output voltage before and after exposing the device to temperature extremes.
(6) Long term stability is change in VREF at 25°C measured continuously during 1000 hours.

6.6 Typical Characteristics

unless otherwise specified, VIN = 3.3 V, VOUT = 2.5 V, ILOAD = 0, COUT = 0.022 µF, TA = 25°C, and VEN = VIN
LM4120 10104712.png Figure 1. Long Term Drift
LM4120 10104714.png Figure 3. Short Circuit Current vs Temperature
LM4120 10104733.png Figure 5. Dropout Voltage vs Load Current
LM4120 10104718.png Figure 7. Load Regulation
LM4120 10104721.png Figure 9. GND Pin Current at No Load vs Temperature
LM4120 10104723.png Figure 11. 0.1-Hz to 10-Hz Output Noise
LM4120 10104725.png Figure 13. PSRR vs Frequency
LM4120 10104729.png Figure 15. Load Step Response
LM4120 10104731.png Figure 17. Thermal Hysteresis
LM4120 10104713.png Figure 2. Typical Temperature Drift
LM4120 10104715.png Figure 4. Dropout Voltage vs Output Error
LM4120 10104717.png Figure 6. Line Regulation
LM4120 10104719.png Figure 8. GND Pin Current
LM4120 10104722.png Figure 10. GND Pin Current vs Load
LM4120 10104724.png Figure 12. Output Impedance vs Frequency
LM4120 10104727.png Figure 14. Enable Response
LM4120 10104730.png Figure 16. Line Step Response
LM4120 10104716.png Figure 18. Enable Pin Current