SNAS416K July   2007  – November 2019 LM48511

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      EMI Graph: LM48511 RF Emissions — 3-Inch Cable
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics VDD = 5 V
    6. 6.6 Electrical Characteristics VDD = 3.6 V
    7. 6.7 Electrical Characteristics VDD = 3 V
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 General Amplifier Function
      2. 7.3.2 Differential Amplifier Explanation
      3. 7.3.3 Audio Amplifier Power Dissipation and Efficiency
      4. 7.3.4 Regulator Power Dissipation
      5. 7.3.5 Shutdown Function
      6. 7.3.6 Regulator Feedback Select
    4. 7.4 Device Functional Modes
      1. 7.4.1 7.4.1 Fixed Frequency
      2. 7.4.2 7.4.2 Spread Spectrum Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Proper Selection of External Components
        2. 8.2.2.2  Power Supply Bypassing
        3. 8.2.2.3  Audio Amplifier Gain Setting Resistor Selection
        4. 8.2.2.4  Audio Amplifier Input Capacitor Selection
        5. 8.2.2.5  Selecting Regulator Output Capacitor
        6. 8.2.2.6  Selecting Regulating Bypass Capacitor
        7. 8.2.2.7  Selecting the Soft-Start (CSS) Capacitor
        8. 8.2.2.8  Selecting Diode (D1)
        9. 8.2.2.9  Duty Cycle
        10. 8.2.2.10 Selecting Inductor Value
        11. 8.2.2.11 Inductor Supplies
        12. 8.2.2.12 Setting the Regulator Output Voltage (PV1)
        13. 8.2.2.13 Discontinuous and Continuous Operation
        14. 8.2.2.14 ISW Feed-Forward Compensation for Boost Converter
        15. 8.2.2.15 Calculating Regulator Output Current
        16. 8.2.2.16 Design Parameters VSW and ISW
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Power and Ground Circuits
      2. 10.1.2 Layout Helpful Hints
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Audio Amplifier Input Capacitor Selection

Input capacitors may be required for some applications, or when the audio source is single-ended. Input capacitors block the DC component of the audio signal, eliminating any conflict between the DC component of the audio source and the bias voltage of the LM48511. The input capacitors create a highpass filter with the input resistors RIN. The -3dB point of the highpass filter is found by:

Equation 4. f = 1 / 2πRINCIN

In single-ended configurations, the input capacitor value affects click-and-pop performance. The LM48511 features a 50-mg turnon delaly. Choose the input capacitor / input resistor values such that the capacitor is charged before the 50-ms turnon delay expires. A capacitor value of 0.18 μF and a 20-kΩ input resistor are recommended. In differential applications, the charging of the input capacitor does not affect click-and-pop significantly.

The input capacitors can also be used to remove low-frequency content from the audio signal. Highpass filtering the audio signal helps protect speakers that can not reproduce or may be damaged by low frequencies. When the LM48511 is using a single-ended source, power supply noise on the ground is seen as an input signal. Setting the highpass filter point above the power supply noise frequencies, 217 Hz in a GSM phone, for example, filters out the noise such that it is not amplified and heard on the output. Capacitors with a tolerance of 10% or better are recommended for impedance matching and improved CMRR and PSRR.