SNVSAG9 March   2016 LM5022-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings: LM5022-Q1
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 High Voltage Start-Up Regulator
      2. 7.3.2 Input Undervoltage Detector
      3. 7.3.3 Error Amplifier
      4. 7.3.4 Current Sensing and Current Limiting
      5. 7.3.5 PWM Comparator and Slope Compensation
      6. 7.3.6 Soft Start
      7. 7.3.7 MOSFET Gate Driver
      8. 7.3.8 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Oscillator, Shutdown, and SYNC
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Switching Frequency
        2. 8.2.2.2  MOSFET
        3. 8.2.2.3  Output Diode
        4. 8.2.2.4  Boost Inductor
        5. 8.2.2.5  Output Capacitor
        6. 8.2.2.6  VCC Decoupling Capacitor
        7. 8.2.2.7  Input Capacitor
        8. 8.2.2.8  Current Sense Filter
        9. 8.2.2.9  RSNS, RS2 and Current Limit
        10. 8.2.2.10 Control Loop Compensation
        11. 8.2.2.11 Efficiency Calculations
          1. 8.2.2.11.1 Chip Operating Loss
          2. 8.2.2.11.2 MOSFET Switching Loss
          3. 8.2.2.11.3 MOSFET and RSNS Conduction Loss
          4. 8.2.2.11.4 Output Diode Loss
          5. 8.2.2.11.5 Input Capacitor Loss
          6. 8.2.2.11.6 Output Capacitor Loss
          7. 8.2.2.11.7 Boost Inductor Loss
          8. 8.2.2.11.8 Total Loss
          9. 8.2.2.11.9 Efficiency
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Filter Capacitors
      2. 10.1.2 Sense Lines
      3. 10.1.3 Compact Layout
      4. 10.1.4 Ground Plane and Shape Routing
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Design Support
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
VIN to GND –0.3 65 V
VCC to GND –0.3 16 V
RT/SYNC to GND –0.3 5.5 V
OUT to GND –1.5V for < 100 ns
All other pins to GND –0.3 7 V
Power dissipation Internally limited
Junction temperature(3) 150 °C
Soldering information   Vapor phase (60 sec.) 215 °C
Infrared (15 sec.) 220 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(3) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.

6.2 ESD Ratings: LM5022-Q1

VALUE UNIT
V(ESD) Human body model (HBM), per AEC Q100-002(1) ±2000 V
Charged device model (CDM), per AEC Q100-011(2) ±750 V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. This is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process
(2) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)
MIN NOM MAX UNIT
Supply voltage 6 60 V
External voltage at VCC 7.5 14 V
Junction temperature –40 125 °C
(1) Operating Ratings are conditions under the device is intended to be functional. For specifications and test conditions, see Electrical Characteristics

6.4 Thermal Information

THERMAL METRIC(1) LM5022-Q1 UNIT
DGS (VSSOP)
10 PINS
RθJA Junction-to-ambient thermal resistance 161.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 56 °C/W
RθJB Junction-to-board thermal resistance 81.3 °C/W
ψJT Junction-to-top characterization parameter 5.7 °C/W
ψJB Junction-to-board characterization parameter 80 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Typical limits apply for TJ = 25°C and are provided for reference purposes only; minimum and maximum limits apply over the junction temperature (TJ) range of –40°C to +125°C. VIN = 24 V and RT = 27.4 kΩ, unless otherwise indicated.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SYSTEM PARAMETERS
VFB FB Pin Voltage 1.225 1.250 1.275 V
START-UP REGULATOR
VCC(2) VCC Regulation 10 V ≤ VIN ≤ 60 V, ICC = 1 mA 6.6 7 7.4 V
VCC Regulation 6 V ≤ VIN < 10 V, VCC Pin Open Circuit 5
ICC Supply Current OUT Pin Capacitance = 0
VCC = 10 V
3.5 4 mA
ICC-LIM VCC Current Limit VCC = 0 V, ((3), (2)) 15 35 mA
VIN - VCC Dropout Voltage Across Bypass Switch ICC = 0 mA, ƒSW < 200 kHz
6 V ≤ VIN ≤ 8.5 V
200 mV
VBYP-HI Bypass Switch Turn-off Threshold VIN increasing 8.7 V
VBYP-HYS Bypass Switch Threshold Hysteresis VIN Decreasing 260 mV
ZVCC VCC Pin Output Impedance
0 mA ≤ ICC ≤ 5 mA
VIN = 6 V 58 Ω
VIN = 8 V 53
VIN = 24 V 1.6
VCC-HI VCC Pin UVLO Rising Threshold 5 V
VCC-HYS VCC Pin UVLO Falling Hysteresis 300 mV
IVIN Start-up Regulator Leakage VIN = 60 V 150 500 µA
IIN-SD Shutdown Current VUVLO = 0 V, VCC = Open Circuit 350 450 µA
ERROR AMPLIFIER
GBW Gain Bandwidth 4 MHz
ADC DC Gain 75 dB
ICOMP COMP Pin Current Sink Capability VFB = 1.5 V
VCOMP = 1 V
5 17 mA
UVLO
VSD Shutdown Threshold 1.22 1.25 1.28 V
ISD-HYS Shutdown
Hysteresis Current Source
16 20 24 µA
CURRENT LIMIT
tLIM-DLY Delay from ILIM to Output CS steps from 0 V to 0.6 V
OUT transitions to 90% of VCC
30 ns
VCS Current Limit Threshold Voltage 0.434 0.5 0.55 V
tBLK Leading Edge Blanking Time 65 ns
RCS CS Pin Sink Impedance Blanking active 40 75 Ω
SOFT-START
ISS Soft-start Current Source 7 10 13 µA
VSS-OFF Soft-start to COMP Offset 0.344 0.55 0.75 V
OSCILLATOR
fSW RT to GND = 84.5 kΩ See(4) 170 200 230 kHz
RT to GND = 27.4 kΩ See(4) 525 600 675 kHz
RT to GND = 16.2 kΩ See(4) 865 990 1115 kHz
RT to GND = 6.65 kΩ See(4) 1910 2240 2570 kHz
VSYNC-HI Synchronization Rising Threshold 3.8 V
PWM COMPARATOR
tCOMP-DLY Delay from COMP to OUT Transition VCOMP = 2 V
CS stepped from 0 V to 0.4 V
25 ns
DMIN Minimum Duty Cycle VCOMP = 0 V 0%
DMAX Maximum Duty Cycle 90% 95%
APWM COMP to PWM Comparator Gain 0.33 V/V
VCOMP-OC COMP Pin Open Circuit Voltage VFB = 0 V 4.3 5.2 6.1 V
ICOMP-SC COMP Pin Short Circuit Current VCOMP = 0 V, VFB = 0V 0.6 1.1 1.5 mA
SLOPE COMPENSATION
VSLOPE Slope Compensation Amplitude 83 110 137 mV
MOSFET DRIVER
VSAT-HI Output High Saturation Voltage (VCC – VOUT) IOUT = 50 mA 0.25 0.75 V
VSAT-LO Output Low Saturation Voltage (VOUT) IOUT = 100 mA 0.25 0.75 V
tRISE OUT Pin Rise Time OUT Pin load = 1 nF 18 ns
tFALL OUT Pin Fall Time OUT Pin load = 1 nF 15 ns
THERMAL CHARACTERISTICS
TSD Thermal Shutdown Threshold 165 °C
TSD-HYS Thermal Shutdown Hysteresis 25 °C
(1) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and applying statistical process control. The junction temperature (TJ in °C) is calculated from the ambient temperature (TA in °C) and power dissipation (PD in Watts) as follows: TJ = TA + (PD • RθJA) where RθJA (in °C/W) is the package thermal impedance provided in the Thermal Information section.
(2) VCC provides bias for the internal gate drive and control circuits.
(3) Device thermal limitations may limit usable range.
(4) Specification applies to the oscillator frequency.

6.6 Typical Characteristics

LM5022-Q1 20212255.png
VO = 40 V
Figure 1. Efficiency, Example Circuit BOM
LM5022-Q1 20212204.png
TA = 25°C
Figure 3. VFB vs. VIN
LM5022-Q1 20212206.png
TA = 25°C
Figure 5. Maximum Duty Cycle vs. ƒSW
LM5022-Q1 FswvsTemp_2.2MHz.gif
RT = 6.65 KΩ
Figure 7. ƒSW vs. Temperature
LM5022-Q1 20212210.png
Figure 9. OUT Pin TRISE vs. Gate Capacitance
LM5022-Q1 RtvsFsw_2.2MHz.gif
TA = 25°C
Figure 11. RT vs. ƒSW
LM5022-Q1 20212203.png
VIN = 24 V
Figure 2. VFB vs. Temperature
LM5022-Q1 20212205.png
TA = 25°C
Figure 4. VCC vs. VIN
LM5022-Q1 20212207.png
RT = 16.2 KΩ
Figure 6. ƒSW vs. Temperature
LM5022-Q1 20212209.png
Figure 8. SS vs. Temperature
LM5022-Q1 20212211.png
Figure 10. OUT Pin TFALL vs. Gate Capacitance