SNVS628H October   2009  – December 2019 LM5060

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application Circuit
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power-Up Sequence
      2. 7.4.2 Status Conditions
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Gate Control
      2. 8.1.2  Fault Timer
      3. 8.1.3  VGS Considerations
      4. 8.1.4  VDS Fault Condition
      5. 8.1.5  Overcurrent Fault
      6. 8.1.6  Restart After Overcurrent Fault Event
      7. 8.1.7  Enable
      8. 8.1.8  UVLO
      9. 8.1.9  OVP
      10. 8.1.10 Restart After OVP Event
      11. 8.1.11 nPGD Pin
    2. 8.2 Typical Applications
      1. 8.2.1 Example Number 1: LM5060EVAL Design
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 VDS Fault Detection and Selecting Sense Pin Resistor RS
          2. 8.2.1.2.2 Turn-On Time
          3. 8.2.1.2.3 Fault Detection Delay Time
          4. 8.2.1.2.4 MOSFET Selection
          5. 8.2.1.2.5 Input and Output Capacitors
          6. 8.2.1.2.6 UVLO, OVP
          7. 8.2.1.2.7 POWER GOOD Indicator
          8. 8.2.1.2.8 Input Bypass Capacitor
          9. 8.2.1.2.9 Large Load Capacitance
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Example Number 2: Reverse Polarity Protection With Diodes
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Application Curve
      3. 8.2.3 Example Number 3: Reverse Polarity Protection With Resistor
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
          1. 8.2.3.2.1 Reverse Polarity Protection With a Resistor
          2. 8.2.3.2.2 Fault Detection With RS and RO
        3. 8.2.3.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input and Output Capacitors

Input and output capacitors are not necessary in all applications. Any current that the external MOSFET conducts in the on-state will decrease very quickly as the MOSFET turns off. All trace inductances in the design including wires and printed circuit board traces will cause inductive voltage kicks during the fast termination of a conducting current. On the input side of the LM5060 circuit this inductive kick can cause large positive voltage spikes, while on the output side, negative voltage spikes are generated. To limit such voltage spikes, local capacitance or clamp circuits can be used. The necessary capacitor value depends on the steady state input voltage level, the level of current running through the MOSFET, the inductance of circuit board traces as well as the transition speed of the MOSFET.

Since the exact amount of trace inductance is hard to predict, careful evaluation of the circuit board is the best method to optimize the input or output capacitance or clamp circuits.