SNVS655I June   2011  – January 2016 LM5066

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 SMBus Communications Timing Requirements and Definitions
    7. 7.7 Switching Characteristics
    8. 7.8 Typical Performance Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Current Limit
      2. 8.3.2 Circuit Breaker
      3. 8.3.3 Power Limit
      4. 8.3.4 UVLO
      5. 8.3.5 OVLO
      6. 8.3.6 Power Good Pin
      7. 8.3.7 VDD Sub-Regulator
      8. 8.3.8 Remote Temperature Sensing
      9. 8.3.9 Damaged MOSFET Detection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Up Sequence
      2. 8.4.2 Gate Control
      3. 8.4.3 Fault Timer and Restart
      4. 8.4.4 Shutdown Control
      5. 8.4.5 Enabling/Disabling and Resetting
    5. 8.5 Programming
      1. 8.5.1 PMBus Command Support
      2. 8.5.2 Standard PMBus Commands
        1. 8.5.2.1  OPERATION (01h)
        2. 8.5.2.2  CLEAR_FAULTS (03h)
        3. 8.5.2.3  CAPABILITY (19h)
        4. 8.5.2.4  VOUT_UV_WARN_LIMIT (43h)
        5. 8.5.2.5  OT_FAULT_LIMIT (4Fh)
        6. 8.5.2.6  OT_WARN_LIMIT (51h)
        7. 8.5.2.7  VIN_OV_WARN_LIMIT (57h)
        8. 8.5.2.8  VIN_UV_WARN_LIMIT (58h)
        9. 8.5.2.9  STATUS_BYTE (78h)
        10. 8.5.2.10 STATUS_WORD (79h)
        11. 8.5.2.11 STATUS_VOUT (7Ah)
        12. 8.5.2.12 STATUS_INPUT (7Ch)
        13. 8.5.2.13 STATUS_TEMPERATURE (7dh)
        14. 8.5.2.14 STATUS_CML (7Eh)
        15. 8.5.2.15 STATUS_MFR_SPECIFIC (80h)
        16. 8.5.2.16 READ_VIN (88h)
        17. 8.5.2.17 READ_VOUT (8Bh)
        18. 8.5.2.18 READ_TEMPERATURE_1 (8Dh)
        19. 8.5.2.19 MFR_ID (99h)
        20. 8.5.2.20 MFR_MODEL (9Ah)
        21. 8.5.2.21 MFR_REVISION (9Bh)
      3. 8.5.3 Manufacturer Specific PMBus Commands
        1. 8.5.3.1  MFR_SPECIFIC_00: READ_VAUX (D0h)
        2. 8.5.3.2  MFR_SPECIFIC_01: MFR_READ_IIN (D1h)
        3. 8.5.3.3  MFR_SPECIFIC_02: MFR_READ_PIN (D2h)
        4. 8.5.3.4  MFR_SPECIFIC_03: MFR_IN_OC_WARN_LIMIT (D3h)
        5. 8.5.3.5  MFR_SPECIFIC_04: MFR_PIN_OP_WARN_LIMIT (D4h)
        6. 8.5.3.6  MFR_SPECIFIC_05: READ_PIN_PEAK (D5h)
        7. 8.5.3.7  MFR_SPECIFIC_06: CLEAR_PIN_PEAK (D6h)
        8. 8.5.3.8  MFR_SPECIFIC_07: GATE_MASK (D7h)
        9. 8.5.3.9  MFR_SPECIFIC_08: ALERT_MASK (D8h)
        10. 8.5.3.10 MFR_SPECIFIC_09: DEVICE_SETUP (D9h)
        11. 8.5.3.11 MFR_SPECIFIC_10: BLOCK_READ (DAh)
        12. 8.5.3.12 MFR_SPECIFIC_11: SAMPLES_FOR_AVG (DBh)
        13. 8.5.3.13 MFR_SPECIFIC_12: READ_AVG_VIN (DCh)
        14. 8.5.3.14 MFR_SPECIFIC_13: READ_AVG_VOUT (DDh)
        15. 8.5.3.15 MFR_SPECIFIC_14: READ_AVG_IIN (DEh)
        16. 8.5.3.16 MFR_SPECIFIC_15: READ_AVG_PIN
        17. 8.5.3.17 MFR_SPECIFIC_16: BLACK_BOX_READ (E0h)
        18. 8.5.3.18 MFR_SPECIFIC_17: READ_DIAGNOSTIC_WORD (E1h)
        19. 8.5.3.19 MFR_SPECIFIC_18: AVG_BLOCK_READ (E2h)
      4. 8.5.4 Reading and Writing Telemetry Data and Warning Thresholds
      5. 8.5.5 Determining Telemetry Coefficients Empirically With Linear Fit
      6. 8.5.6 Writing Telemetry Data
      7. 8.5.7 PMBus Address Lines (ADR0, ADR1, ADR2)
      8. 8.5.8 SMBA Response
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 48-V, 10-A PMBus Hotswap Design
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design-In Procedure
          1. 9.2.1.2.1 Select RSNS and CL Setting
          2. 9.2.1.2.2 Selecting the Hotswap FETs
          3. 9.2.1.2.3 Select Power Limit
          4. 9.2.1.2.4 Set Fault Timer
          5. 9.2.1.2.5 Check MOSFET SOA
          6. 9.2.1.2.6 Set UVLO and OVLO Thresholds
            1. 9.2.1.2.6.1 Option A
            2. 9.2.1.2.6.2 Option B
            3. 9.2.1.2.6.3 Option C
            4. 9.2.1.2.6.4 Option D
          7. 9.2.1.2.7 Power Good Pin
          8. 9.2.1.2.8 Input and Output Protection
          9. 9.2.1.2.9 Final Schematic and Component Values
        3. 9.2.1.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Trademarks
    2. 12.2 Electrostatic Discharge Caution
    3. 12.3 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings (1)

over operating free-air temperature (unless otherwise noted)
MIN MAX UNIT
Input voltage VIN, VIN_K, GATE, UVLO/EN, SENSE, PGD to GND –0.3 100 V
OVLO, FB, TIMER, PWR to GND –0.3 7
OUT to GND –0.3 100
OUT to GND (1-ms transient) –1 100
SCL, SDAI, SDAO, CL, ADR0, ADR1, ADR2, VDD, VAUX, DIODE, RETRY to GND –0.3 6
SENSE to VIN_K, VIN to VIN_K, AGND to GND –0.3 0.3
Junction temperature 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
VESD (1) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins except GATE(2) ± 2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(3) ±500 V
(1) The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin. 2-kV rating for all pins except GATE which is rated for 1 kV.
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN, SENSE, OUT voltage 10 80 V
Junction temperature –40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) LM5066 UNIT
PWP
28 PINS
RθJA Junction-to-ambient thermal resistance(2) 35.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance(3) 19.9
RθJB Junction-to-board thermal resistance(4) 16.8
ψJT Junction-to-top characterization parameter(5) 0.5
ψJB Junction-to-board characterization parameter(6) 16.7
RθJC(bot) Junction-to-case (bottom) thermal resistance(7) 2.9
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
Spacer

7.5 Electrical Characteristics

Limits in standard type are for TJ = 25°C only; limits in boldface type apply over the junction temperature (TJ) range of -40°C to +125°C unless otherwise stated. Minimum and maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated the following conditions apply: VIN = 48 V. See (1) and (3).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT (VIN PIN)
IIN-EN Input current, enabled VUVLO = 3 V and VOVLO = 2 V 7.2 9.5 mA
PORIT Power-on reset threshold at VIN to trigger insertion timer VIN increasing 7.8 9.0 V
POREN Power-on reset threshold at VIN to enable all functions VIN increasing 8.6 9.9 V
PORHYS POREN hysteresis VIN decreasing 120 mV
VDD REGULATOR (VDD PIN)
VDD IVDD = 0 mA 4.60 4.90 5.15 V
IVDD = 10 mA 4.85 V
VDDILIM VDD current limit –25 –30 –42 mA
VDDPOR VDD voltage reset threshold VDD rising 4.1 V
UVLO/EN, OVLO PINS
UVLOTH UVLO threshold VUVLO falling 2.41 2.48 2.55 V
UVLOHYS UVLO hysteresis current UVLO = 1 V 13 20 26 µA
UVLOBIAS UVLO bias current UVLO = 3 V 1 µA
OVLOTH OVLO threshold VOVLO rising 2.39 2.46 2.53 V
OVLOHYS OVLO hysteresis current OVLO = 1 V –26 –21 –13 µA
OVLOBIAS OVLO bias current OVLO = 1 V 1 µA
POWER GOOD (PGD PIN)
PGDVOL Output low voltage ISINK = 2 mA 60 110 mV
PGDIOH Off leakage current VPGD = 80 V 1 µA
FB PIN
FBTH FB threshold VUVLO = 3 V and VOVLO = 2 V 2.41 2.46 2.52 V
FBHYS FB hysteresis current –25 –20 –15 µA
FBLEAK Off leakage current VFB = 2.3 V 1 µA
POWER LIMIT (PWR PIN)
PWRLIM Power limit sense voltage (VIN-SENSE) SENSE-OUT = 48 V, RPWR = 121 kΩ 16.5 19.5 22.5 mV
SENSE-OUT = 24 V, RPWR = 75 kΩ 23 mV
IPWR PWR pin current VPWR = 2.5 V –20 µA
RSAT(PWR) PWR pin impedance when disabled UVLO = 2 V 135 Ω
GATE CONTROL (GATE PIN)
IGATE Source current Normal Operation –26 –20 –10 µA
Fault sink current UVLO = 2 V 3.4 4.2 5.3 mA
POR circuit breaker sink current VIN – SENSE = 150 mV or VIN < PORIT, VGATE = 5 V 50 115 180 mA
VGATEZ Reverse-bias voltage of GATE to OUT zener diode GATE – OUT 12 16.5 18 V
VGATECP Peak charge pump voltage in normal operation (VIN = VOUT) GATE – OUT 13.6 V
OUT PIN
IOUT-EN OUT bias current, enabled OUT = VIN, Normal operation 78 µA
IOUT-DIS OUT bias current, disabled (2) Disabled, OUT = 0 V, SENSE = VIN –50 µA
CURRENT LIMIT
VCL Current limit threshold voltage
(VIN – VSENSE)
CL = VDD 23 26 29 mV
CL = GND 47 50 53
ISENSE SENSE input current Enabled, SENSE = OUT 25 µA
Disabled, OUT = 0 V 66
Enabled, OUT = 0 V 220
CIRCUIT BREAKER
RTCB Circuit breaker to current limit ratio: (VIN -VSENSE)CB/VCL CB/CL ratio bit = 0, ILim = 50 mV 1.64 1.94 2.23 V/V
CB/CL ratio bit = 1, ILim = 50 mV 3.28 3.87 4.45
CB/CL ratio bit = 0, ILim = 26 mV 1.88
CB/CL ratio bit = 1, ILim = 26 mV 3.75
VCB Circuit breaker threshold voltage:
(VIN – VSENSE)
CB/CL ratio bit = 0, ILim = 50 mV 80 96 110 mV
CB/CL ratio bit = 1, ILim = 50 mV 164 193 222
CB/CL ratio bit = 0, ILim = 26 mV 39 48 57
CB/CL ratio bit = 1, ILim = 26 mV 79 96 113
TIMER (TIMER PIN)
VTMRH Upper threshold 3.74 3.9 4.07 V
VTMRL Lower threshold Restart cycles 0.98 1.1 1.24 V
End of eighth cycle 0.3 V
Re-enable threshold 0.3 V
ITIMER Insertion time current TIMER pin = 2 V –5.9 –4.8 –3.3 µA
Sink current, end of insertion time 1.0 1.5 2.0 mA
Fault detection current –95 –75 –50 µA
Fault sink current 1.7 2.5 3.2 µA
DCFAULT Fault restart duty cycle 0.5 %
INTERNAL REFERENCE
VREF Reference voltage 2.93 2.97 3.02 V
ADC AND MUX
Resolution 12 Bits
INL Integral non-linearity ADC only ±4 LSB
tACQUIRE Acquisition + Conversion time Any channel 100 µs
tRR Acquisition round robin time Cycle all channels 1 ms
TELEMETRY ACCURACY
IINFSR Current input full-scale range CL = GND 75.8 mV
CL = VDD 38.2 mV
IINLSB Current input LSB CL = GND 18.5 µV
CL = VDD 9.3 µV
VAUXFSR VAUX input full-scale range 2.97 V
VAUXLSB VAUX input LSB 725 µV
VINFSR Input voltage full-scale range 89.3 V
VINLSB Input voltage LSB 21.8 mV
IINACC Input current accuracy VIN – SENSE = 50 mV, CL = GND –3.0 +3.0 %
VIN – SENSE = 25 mV, CL = VDD -4.25 4.25 %
VACC VAUX, VIN, VOUT VIN, VOUT = 48 V
VAUX = 2.8V
–2.7 +2.7 %
PINACC Input power accuracy VIN = 48 V, VIN – SENSE = 50mV,
CL = VDD
–4.5 +4.5 %
REMOTE DIODE TEMPERATURE SENSOR
TACC Temperature accuracy using local diode TA = 25°C to 85°C 2 10 °C
Remote diode resolution 9 bits
IDIODE External diode current source High level 250 325 µA
Low level 9.4 µA
Diode current ratio 25.9
PMBus PIN THRESHOLDS (SMBA, SDA, SCL)
VIL Data, clock input low voltage 0.9 V
VIH Data, clock input high voltage 2.1 5.5 V
VOL Data output low voltage ISINK = 3 mA 0 0.4 V
ILEAK Input leakage current SDAI, SMBA,SCL = 5 V 1 µA
CONFIGURATION PIN THRESHOLDS (CL, RETRY)
VIH Threshold voltage 3 V
ILEAK Input leakage current CL, RETRY = 5 V 5 µA
(1) Current out of a pin is indicated as a negative value.
(2) OUT bias current (disabled) due to leakage current through an internal 1 MΩ resistance from SENSE to VOUT.
(3) All electrical characteristics having room temperature limits are tested during production at TA = 25°C. All hot and cold limits are specified by correlating the electrical characteristics to process and temperature variations and applying statistical process control.

7.6 SMBus Communications Timing Requirements and Definitions

PARAMETER MIN MAX UNIT
ƒSMB SMBus operating frequency 10 400 kHz
tBUF Bus free time between stop and start condition 1.3 µs
tHD:STA Hold time after (repeated) start condition. After this period, the first clock is generated. 0.6 µs
tSU:STA Repeated start condition setup time 0.6 µs
tSU:STO Stop condition setup time 0.6 µs
tHD:DAT Data hold time 85 ns
tSU:DAT Data setup time 100 ns
tTIMEOUT Clock low time-out(1) 25 35 ms
tLOW Clock low period 1.5 µs
tHIGH Clock high period(2) 0.6 µs
tLOW:SEXT Cumulative clock low extend time (slave device)(3) 25 ms
tLOW:MEXT Cumulative low extend time (master device)(4) 10 ms
tF Clock or data fall time(5) 20 300 ns
tR Clock or data rise time(5) 20 300 ns
(1) Devices participating in a transfer will timeout when any clock low exceeds the value of tTIMEOUT,MIN of 25 ms. Devices that have detected a timeout condition must reset the communication no later than tTIMEOUT,MAX of 35 ms. The maximum value must be adhered to by both a master and a slave as it incorporates the cumulative stretch limit for both a master (10 ms) and a slave (25 ms).
(2) tHIGH MAX provides a simple method for devices to detect bus idle conditions.
(3) tLOW:SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from the initial start to the stop. If a slave exceeds this time, it is expected to release both its clock and data lines and reset itself.
(4) tLOW:MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined from start-to-ack, ack-to-ack, or ack-to-stop.
(5) Rise and fall time is defined as follows: tR = ( VILMAX – 0.15) to (VIHMIN + 0.15);  tF = 0.9 VDD to (VILMAX – 0.15)
LM5066 301159a1.gif Figure 1. SMBus Timing Diagram

7.7 Switching Characteristics

Unless otherwise stated, the following conditions apply: VVIN = 48 V, –40°C < TJ < 125°C, VUVLO = 3 V , VOVLO = 0 V, RPWR= 20 kΩ.
PARAMETER CONDITIONS MIN TYP MAX UNIT
UVLO/EN, OVLO PINS
UVLODEL UVLO delay Delay to GATE high 9 µs
Delay to GATE low 13
OVLODEL OVLO delay Delay to GATE high 13 µs
Delay to GATE low 10
FB PIN
FBDEL FB Delay Delay to PGD high 7.6 µs
Delay to PGD low 9.2
CURRENT LIMIT
tCL Response time VIN-SENSE stepped from 0 to 80 mV; CL = GND 45 µs
CIRCUIT BREAKER
tCB Response time VIN-SENSE stepped from 0 to 150 mV, time to GATE low, no load 0.42 0.83 µs
TIMER (TIMER PIN)
tFAULT_DELAY Fault to GATE low delay TIMER pin reaches the upper threshold 12 µs

7.8 Typical Performance Characteristics

Unless otherwise specified the following conditions apply: TJ = 25°C, VIN = 48 V. All graphs show junction temperature.
LM5066 C001_SNVS655.png
Figure 2. VIN Pin Current
LM5066 C003_SNVS655.gif
Figure 4. Out Pin Current (Enabled)
LM5066 C005_SNVS655.png
Figure 6. Gate Zener Reverse Bias Voltage (VGATE – VOUT)
LM5066 C007_SNVS655.png
Figure 8. Gate Pin Sink Current
LM5066 C009_SNVS655.png
Figure 10. UVLO Threshold
LM5066 C011_SNVS655.png
Figure 12. FB Threshold
LM5066 C013_SNVS655.png
Figure 14. OVLO Threshold
LM5066 C015_SNVS655.png
Figure 16. Current Limit Threshold
LM5066 C017_SNVS655.png
Figure 18. Reference Voltage
LM5066 C019_SNVS655.png
Figure 20. Pin Measurement Accuracy (VIN – Sense = 50 mV)
LM5066 C002_SNVS655.png
Figure 3. Sense Pin Current (Enabled)
LM5066 C004_SNVS655.gif
Figure 5. Out Pin Current (Disabled)
LM5066 C006_SNVS655.png
Figure 7. Gate Pin Source Current
LM5066 C008_SNVS655.png
Figure 9. VSNS At Power Limit Threshold RPWR = 75 kΩ
LM5066 C010_SNVS655.png
Figure 11. UVLO Hysteresis Current
LM5066 C012_SNVS655.png
Figure 13. FB Hysteresis Current
LM5066 C014_SNVS655.png
Figure 15. OVLO Hysteresis Current
LM5066 C016_SNVS655.png
Figure 17. Circuit Breaker Threshold
LM5066 C018_SNVS655.png
Figure 19. IIN Measurement Accuracy
(VIN – Sense = 50 mV)
LM5066 C020_SNVS655.png
Figure 21. MOSFET Power Dissipation Limit vs RPWR And RS (VIN = 48 V)