SNVS234C September   2004  – September 2016 LM5112 , LM5112-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Inverting Mode
      2. 7.4.2 Non-Inverting Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Thermal Considerations
        1. 10.1.1.1 Drive Power Requirement Calculations In LM5112
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related Links
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • NGG|6
  • DGN|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
VCC to VEE –0.3 15 V
VCC to IN_REF –0.3 15 V
IN/INB to IN_REF –0.3 15 V
IN_REF to VEE –0.3 5 V
Maximum junction temperature 150 °C
Operating junction temperature –40 125 °C
Storage temperature, Tstg –55 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VCC Operating voltage, VCC – IN_REF and VCC – VEE 3.5 14 V
Operating junction temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LM5112, LM5112-Q1 UNIT
NGG (WSON) DGN (MSOP PowerPAD)
6 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 40 53.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 50.8 61.1 °C/W
RθJB Junction-to-board thermal resistance 29.3 37.2 °C/W
ψJT Junction-to-top characterization parameter 0.7 7.2 °C/W
ψJB Junction-to-board characterization parameter 29.5 36.9 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 7.5 4.7 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

TJ = –40°C to 125°C, VCC = 12 V, INB = IN_REF = VEE = 0 V, and no Load on output (unless otherwise noted).
PARAMETER CONDITIONS MIN TYP MAX UNIT
SUPPLY
VCC Operating voltage VCC – IN_REF and VCC – VEE 3.5 14 V
UVLO Undervoltage lockout (rising) VCC – IN_REF 2.4 3 3.5 V
VCCH Undervoltage hysteresis 230 mV
ICC Supply current 1 2 mA
CONTROL INPUTS
VIH Logic high 2.3 V
VIL Logic low 0.8 V
VthH High threshold 1.3 1.75 2.3 V
VthL Low threshold 0.8 1.35 2 V
HYS Input hysteresis 400 mV
IIL Input current low IN = INB = 0 V –1 0.1 1 µA
IIH Input current high IN = INB = VCC –1 0.1 1 µA
OUTPUT DRIVER
ROH Output resistance high IOUT = –10 mA(1) 30 50 Ω
ROL Output resistance low IOUT = 10 mA(1) 1.4 2.5 Ω
ISOURCE Peak source current OUT = VCC / 2,200 ns pulsed current 3 A
ISINK Peak sink current OUT = VCC / 2,200 ns pulsed current 7 A
LATCHUP PROTECTION
AEC–Q100, METHOD 004 TJ = 150°C 500 mA
(1) The output resistance specification applies to the MOS device only. The total output current capability is the sum of the MOS and bipolar devices.

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
td1 Propagation delay time low to high,
IN or INB rising (IN to OUT)
CLOAD = 2 nF, see Figure 13 25 40 ns
td2 Propagation delay time high to low,
IN or INB falling (IN to OUT)
CLOAD = 2 nF, see Figure 13 25 40 ns
tr Rise time CLOAD = 2 nF, see Figure 13 14 ns
tf Fall time CLOAD = 2 nF, see Figure 13 12 ns

6.7 Typical Characteristics

LM5112 LM5112-Q1 20066807.gif Figure 1. Supply Current vs Frequency
LM5112 LM5112-Q1 20066809.gif Figure 3. Rise and Fall Time vs Supply Voltage
LM5112 LM5112-Q1 20066811.gif Figure 5. Rise and Fall Time vs Capacitive Load
LM5112 LM5112-Q1 20066813.gif Figure 7. Delay Time vs Temperature
LM5112 LM5112-Q1 20066815.gif Figure 9. UVLO Thresholds and Hysteresis vs Temperature
LM5112 LM5112-Q1 20066808.gif Figure 2. Supply Current vs Capacitive Load
LM5112 LM5112-Q1 20066810.gif Figure 4. Rise and Fall Time vs Temperature
LM5112 LM5112-Q1 20066812.gif Figure 6. Delay Time vs Supply Voltage
LM5112 LM5112-Q1 20066814.gif Figure 8. Rds(on) vs Supply Voltage
LM5112 LM5112-Q1 20066816.gif Figure 10. Peak Current vs Supply Voltage