SNVSCU2A August   2024  – August 2024 LM5137-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1. 5.1 Wettable Flanks
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN)
      2. 7.3.2  Bias Supply Regulator (VCC, BIAS1/VOUT1, VDDA)
      3. 7.3.3  Precision Enable (EN1, EN2)
      4. 7.3.4  Switching Frequency (RT)
      5. 7.3.5  Pulse Frequency Modulation and Synchronization (PFM/SYNC)
      6. 7.3.6  Synchronization Out (SYNCOUT)
      7. 7.3.7  Dual Random Spread Spectrum (DRSS)
      8. 7.3.8  Configurable Soft Start (RSS)
      9. 7.3.9  Output Voltage Setpoints (FB1, FB2)
      10. 7.3.10 Minimum Controllable On-Time
      11. 7.3.11 Error Amplifier and PWM Comparator (FB1, FB2, COMP1, COMP2)
        1. 7.3.11.1 Slope Compensation
      12. 7.3.12 Inductor Current Sense (ISNS1+, BIAS1/VOUT1, ISNS2+, VOUT2)
        1. 7.3.12.1 Shunt Current Sensing
        2. 7.3.12.2 Inductor DCR Current Sensing
      13. 7.3.13 MOSFET Gate Drivers (HO1, HO2, LO1, LO2)
      14. 7.3.14 Output Configurations (CNFG)
        1. 7.3.14.1 Independent Dual-Output Operation
        2. 7.3.14.2 Single-Output Interleaved Operation
        3. 7.3.14.3 Single-Output Multiphase Operation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Sleep Mode
      2. 7.4.2 PFM Mode
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Power Train Components
        1. 8.1.1.1 Power MOSFETs
        2. 8.1.1.2 Buck Inductor
        3. 8.1.1.3 Output Capacitors
        4. 8.1.1.4 Input Capacitors
        5. 8.1.1.5 EMI Filter
      2. 8.1.2 Error Amplifier and Compensation
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – Dual 5V and 3.3V, 20A Buck Regulator for 12V Automotive Battery Applications
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Custom Design With Excel Quickstart Tool
          3. 8.2.1.2.3 Inductor Calculations
          4. 8.2.1.2.4 Shunt Resistors
          5. 8.2.1.2.5 Ceramic Output Capacitors
          6. 8.2.1.2.6 Ceramic Input Capacitors
          7. 8.2.1.2.7 Feedback Resistors
          8. 8.2.1.2.8 Input Voltage UVLO Resistors
          9. 8.2.1.2.9 Compensation Components
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Design 2 – Two-Phase, Single-Output Buck Regulator for Automotive ADAS Applications
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
      3. 8.2.3 Design 3 – 12V, 20A, 400kHz, Two-Phase Buck Regulator for 48V Automotive Applications
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Power Stage Layout
        2. 8.4.1.2 Gate Drive Layout
        3. 8.4.1.3 PWM Controller Layout
        4. 8.4.1.4 Thermal Design and Layout
        5. 8.4.1.5 Ground Plane Design
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
        1. 9.2.1.1 PCB Layout Resources
        2. 9.2.1.2 Thermal Design Resources
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Capacitors

Ordinarily, the output capacitor energy store of the regulator combined with the control loop response are prescribed to maintain the integrity of the output voltage within the dynamic (transient) tolerance specifications. The usual boundaries restricting the output capacitors in power management applications are driven by finite available PCB area, component footprint and profile, and cost. As the load step amplitude and slew rate increase, the capacitor parasitics – equivalent series resistance (ESR) and equivalent series inductance (ESL) – take greater precedence in shaping the load transient response of the regulator.

The output capacitor, COUT, filters the inductor ripple current and provides a reservoir of charge for step-load transient events. Typically, ceramic capacitors provide extremely low ESR to reduce the output voltage ripple and noise spikes, while tantalum and polymer electrolytic capacitors provide a large bulk capacitance in a relatively compact footprint for transient loading events.

Based on the static specification of peak-to-peak output voltage ripple denoted by ΔVOUT, choose an output capacitance that is higher than that given by Equation 13.

Equation 13. LM5137-Q1

Figure 8-1 conceptually illustrates the relevant current waveforms during both load-on and load-off transitions. As shown, the slew rate of the inductor current represent a large-signal constraint as the inductor current ramps to match the new load-current level following a load transient. This slew-rate limiting exacerbates the deficit of charge in the output capacitor, which must be replenished as rapidly as possible during and after a load-on transient. Similarly, during and after a load-off transient, the slew rate limiting of the inductor current adds to the surplus of charge in the output capacitor that must be depleted as quickly as possible.

LM5137-Q1 Load Transient Response Representation
          Showing COUT Charge Surplus or Deficit Figure 8-1 Load Transient Response Representation Showing COUT Charge Surplus or Deficit

In a typical regulator application of 12V input to low output voltage (for example, 3.3V), the load-off transient represents the worst case in terms of output voltage transient deviation. In that voltage conversion ratio application, the steady-state duty cycle is close to 30% and the large-signal inductor current slew rate when the duty cycle collapses to zero is approximately –VOUT/L. Compared to a load-on transient, the inductor current takes much longer to transition to the required level. The surplus of charge in the output capacitor causes the output voltage to significantly overshoot. In fact, to deplete this excess charge from the output capacitor as quickly as possible, the inductor current must ramp below the nominal level following the load step. In this scenario, a large output capacitance can be advantageously employed to absorb the excess charge and minimize the voltage overshoot.

Equation 13 calculates the output capacitance to meet the dynamic specification of output voltage overshoot during such a load-off transient (denoted as ΔVOVERSHOOT with step reduction in output current given by ΔIOUT).

Equation 14. LM5137-Q1

The capacitor manufacturer data sheet provides the ESR and ESL, either explicitly as specifications or implicitly in the impedance versus frequency curve. Depending on the type, size, and construction, electrolytic capacitors have significant ESR, 10mΩ and above, and relatively high ESL, 10nH to 20nH. PCB traces contribute some parasitic resistance and inductance as well. Ceramic output capacitors, have low ESR and ESL contributions at the switching frequency, and the capacitive impedance dominates. However, depending on the package and voltage rating of the ceramic capacitor, the effective capacitance can drop quite significantly with applied DC voltage and operating temperature.

Ignoring the ESR term in Equation 13 gives a quick estimation of the minimum ceramic capacitance necessary to meet the output ripple specification. Two to four 47µF, 6.3V or 10V, X7R capacitors in 1210 footprint are a common choice for a 5V output. Use Equation 14 to determine if additional capacitance is necessary to meet the load-off transient overshoot specification.

A composite implementation of ceramic and electrolytic capacitors highlights the rationale for paralleling capacitors of dissimilar chemistries yet complementary performance. The frequency response of each capacitor is accretive in that each capacitor provides desirable performance over a certain part of the applicable frequency range. While the ceramic provides excellent mid- and high-frequency decoupling characteristics with low ESR and ESL to minimize the switching frequency output ripple, the electrolytic device with large bulk capacitance provides low-frequency energy storage to cope with lower frequency load-transient demands.