SNVSC01 February   2023 LM5148

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Voltage Range (VIN)
      2. 8.3.2  High-Voltage Bias Supply Regulator (VCC, VCCX, VDDA)
      3. 8.3.3  Precision Enable (EN)
      4. 8.3.4  Power-Good Monitor (PG)
      5. 8.3.5  Switching Frequency (RT)
      6. 8.3.6  Dual Random Spread Spectrum (DRSS)
      7. 8.3.7  Soft Start
      8. 8.3.8  Output Voltage Setpoint (FB)
      9. 8.3.9  Minimum Controllable On Time
      10. 8.3.10 Error Amplifier and PWM Comparator (FB, EXTCOMP)
      11. 8.3.11 Slope Compensation
      12. 8.3.12 Inductor Current Sense (ISNS+, VOUT)
        1. 8.3.12.1 Shunt Current Sensing
        2. 8.3.12.2 Inductor DCR Current Sensing
      13. 8.3.13 Hiccup Mode Current Limiting
      14. 8.3.14 High-Side and Low-Side Gate Drivers (HO, LO)
      15. 8.3.15 Output Configurations (CNFG)
      16. 8.3.16 Single-Output Dual-Phase Operation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Sleep Mode
      2. 8.4.2 Pulse Frequency Modulation and Synchronization (PFM/SYNC)
      3. 8.4.3 Thermal Shutdown
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Power Train Components
        1. 9.1.1.1 Buck Inductor
        2. 9.1.1.2 Output Capacitors
        3. 9.1.1.3 Input Capacitors
        4. 9.1.1.4 Power MOSFETs
        5. 9.1.1.5 EMI Filter
      2. 9.1.2 Error Amplifier and Compensation
    2. 9.2 Typical Applications
      1. 9.2.1 Design 1 – High Efficiency 2.1-MHz Synchronous Buck Regulator
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Custom Design with WEBENCH® Tools
          2. 9.2.1.2.2 Custom Design with Excel Quickstart Tool
          3. 9.2.1.2.3 Buck Inductor
          4. 9.2.1.2.4 Current-Sense Resistance
          5. 9.2.1.2.5 Output Capacitors
          6. 9.2.1.2.6 Input Capacitors
          7. 9.2.1.2.7 Frequency Set Resistor
          8. 9.2.1.2.8 Feedback Resistors
          9. 9.2.1.2.9 Compensation Components
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Design 2 – High Efficiency 48-V to 12-V 400-kHz Synchronous Buck Regulator
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Design 3 – High Efficiency 440-kHz Synchronous Buck Regulator
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Application Curves
      4. 9.2.4 Design 4 – Dual-Phase 400-kHz 20-A Synchronous Buck Regulator
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
        3. 9.2.4.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Power Stage Layout
        2. 9.4.1.2 Gate-Drive Layout
        3. 9.4.1.3 PWM Controller Layout
        4. 9.4.1.4 Thermal Design and Layout
        5. 9.4.1.5 Ground Plane Design
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
        1. 10.1.1.1 Custom Design with WEBENCH® Tools
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
        1. 10.2.1.1 PCB Layout Resources
        2. 10.2.1.2 Thermal Design Resources
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Inductor DCR Current Sensing

For high-power applications that do not require accurate current-limit protection, inductor DCR current sensing is preferable. This technique provides lossless and continuous monitoring of the inductor current using an RC sense network in parallel with the inductor. Select an inductor with a low DCR tolerance to achieve a typical current limit accuracy within the range of 10% to 15% at room temperature. Components RCS and CCS in #GUID-5C613DC4-3F86-4DB5-B8EB-206BF5979FDF create a low-pass filter across the inductor to enable differential sensing of the voltage across the inductor DCR.

Figure 8-5 Inductor DCR Current Sensing Implementation

The voltage drop across the sense capacitor in the s-domain is given by #SNVSB294584. When the RCSCCS time constant is equal to LO/RDCR, the voltage developed across the sense capacitor, CCS, is a replica of the inductor DCR voltage and accurate current sensing is achieved. If the RCSCCS time constant is not equal to the LO/RDCR time constant, there is a sensing error as follows:

  • RCSCCS > LO/RDCR → the DC level is correct, but the AC amplitude is attenuated.
  • RCSCCS < LO/RDCR → the DC level is correct, but the AC amplitude is amplified.

Equation 11. GUID-C61072DB-8DF5-4178-AE64-365957C3DEE6-low.gif

Choose the CCS capacitance greater than or equal to 0.1 μF to maintain a low-impedance sensing network, thus reducing the susceptibility of noise pickup from the switch node. Carefully observe GUID-6CFB9914-50AB-4847-9B74-DE78EA03AA6F.html#GUID-6CFB9914-50AB-4847-9B74-DE78EA03AA6F to make sure that noise and DC errors do not corrupt the current sense signals applied between the ISNS+ and VOUT pins.