SNVSCM3 June   2024 LM5171

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
      1. 6.1.1 Device Configurations (CFG) and I2C Address
      2. 6.1.2 Definition of IC Operation Modes
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Bias Supplies and Voltage Reference (VCC, VDD, and VREF)
      2. 6.3.2  Undervoltage Lockout (UVLO) and Controller Enable or Disable
      3. 6.3.3  High Voltage Inputs (HV1, HV2)
      4. 6.3.4  Current Sense Amplifier
      5. 6.3.5  Control Commands
        1. 6.3.5.1 Channel Enable Commands (EN1, EN2)
        2. 6.3.5.2 Direction Command (DIR1 and DIR2)
        3. 6.3.5.3 Channel Current Setting Commands (ISET1 and ISET2)
      6. 6.3.6  Channel Current Monitor (IMON1, IMON2)
        1. 6.3.6.1 Individual Channel Current Monitor
        2. 6.3.6.2 Multiphase Total Current Monitoring
      7. 6.3.7  Cycle-by-Cycle Peak Current Limit (IPK)
      8. 6.3.8  Inner Current Loop Error Amplifier
      9. 6.3.9  Outer Voltage Loop Error Amplifier
      10. 6.3.10 Soft Start, Diode Emulation, and Forced PWM Control (SS/DEM1 and SS/DEM2)
        1. 6.3.10.1 Soft-Start Control by the SS/DEM Pins
        2. 6.3.10.2 DEM Programming
        3. 6.3.10.3 FPWM Programming and Dynamic FPWM and DEM Change
        4. 6.3.10.4 SS Pin as the Restart Timer
          1. 6.3.10.4.1 Restart Timer in OVP
          2. 6.3.10.4.2 Restart Timer after a DIR Change
      11. 6.3.11 Gate Drive Outputs, Dead Time Programming and Adaptive Dead Time (HO1, HO2, LO1, LO2, DT/SD)
      12. 6.3.12 Emergency Latched Shutdown (DT/SD)
      13. 6.3.13 PWM Comparator
      14. 6.3.14 Oscillator (OSC)
      15. 6.3.15 Synchronization to an External Clock (SYNCI, SYNCO)
      16. 6.3.16 Overvoltage Protection (OVP)
      17. 6.3.17 Multiphase Configurations (SYNCO, OPT)
        1. 6.3.17.1 Multiphase in Star Configuration
        2. 6.3.17.2 Daisy-Chain Configurations for 2, 3, or 4 Phases parallel operations
        3. 6.3.17.3 Daisy-Chain configuration for 6 or 8 phases parallel operation
      18. 6.3.18 Thermal Shutdown
    4. 6.4 Programming
      1. 6.4.1 Dynamic Dead Time Adjustment
      2. 6.4.2 UVLO Programming
    5. 6.5 Registers
      1. 6.5.1 I2C Serial Interface
      2. 6.5.2 I2C Bus Operation
      3. 6.5.3 Clock Stretching
      4. 6.5.4 Data Transfer Formats
      5. 6.5.5 Single READ From a Defined Register Address
      6. 6.5.6 Sequential READ Starting From a Defined Register Address
      7. 6.5.7 Single WRITE to a Defined Register Address
      8. 6.5.8 Sequential WRITE Starting From A Defined Register Address
      9. 6.5.9 REGFIELD Registers
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Small Signal Model
        1. 7.1.1.1 Current Loop Small Signal Model
        2. 7.1.1.2 Current Loop Compensation
        3. 7.1.1.3 Voltage Loop Small Signal Model
        4. 7.1.1.4 Voltage Loop Compensation
    2. 7.2 Typical Application
      1. 7.2.1 60A, Dual-Phase, 48V to 12V Bidirectional Converter
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1  Determining the Duty Cycle
          2. 7.2.1.2.2  Oscillator Programming
          3. 7.2.1.2.3  Power Inductor, RMS and Peak Currents
          4. 7.2.1.2.4  Current Sense (RCS)
          5. 7.2.1.2.5  Current Setting Limits (ISETx)
          6. 7.2.1.2.6  Peak Current Limit
          7. 7.2.1.2.7  Power MOSFETS
          8. 7.2.1.2.8  Bias Supply
          9. 7.2.1.2.9  Boot Strap
          10. 7.2.1.2.10 OVP
          11. 7.2.1.2.11 Dead Time
          12. 7.2.1.2.12 Channel Current Monitor (IMONx)
          13. 7.2.1.2.13 UVLO Pin Usage
          14. 7.2.1.2.14 HVx Pin Configuration
          15. 7.2.1.2.15 Loop Compensation
          16. 7.2.1.2.16 Soft Start
          17. 7.2.1.2.17 PWM to ISET Pins
          18. 7.2.1.2.18 Proper Termination of Unused Pins
        3. 7.2.1.3 Application Curves
          1. 7.2.1.3.1 Efficiency
          2. 7.2.1.3.2 Step Load Response
          3. 7.2.1.3.3 Dual-Channel Interleaving Operation
          4. 7.2.1.3.4 Typical Start Up and Shutdown
          5. 7.2.1.3.5 DEM and FPWM
          6. 7.2.1.3.6 Mode transition between DEM and FPWM
          7. 7.2.1.3.7 ISET Tracking and PreCharge
          8. 7.2.1.3.8 Protections
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Examples
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Bias Supply

The total load current of the bias supply is mainly determined by the total MOSFET gate charge Qg. Assume the system employs multiple LM5171s to implement M number of phases, and each phase uses N number of MOSFETs in parallel as one switch. There are 2× N MOSFETs per phase to drive. Then the total current to drive these MOSFETs through VCC bias supply is determined by Equation 100.

Equation 100. LM5171

where

  • 5mA is the worst case maximum current used by the control logic circuit of each phase.

In an example of a four-phase system employing two parallel MOSFETs for one switch, where M = 4, N = 2, Qg = 100nC, and Fsw = 100KHz, the bias supply must be able to support at least the following total load current:

Equation 101. LM5171

In an example of an eight-phase system employing the same parallel MOSFETs for one switch, the bias supply must be able to support the following total load current:

Equation 102. LM5171

As described in Bias Supplies and Voltage Reference (VCC, VDD, and VREF)The LM5171 integrates a LDO driver to drive an external N-channel enhancement MOSFET to generate 9V bias supply at the VCC pin. PMT560ENEAX is selected in this application.

However, the loss of the external MOSFET may be quite high especially in high load current and high input voltage conditions. External 10 to 12V VCC bias supply may be preferred. If not available in the system, the user can generate it from the LV-port using a buck-boost or SEPIC converter, or from the HV-port using a buck converter. Refer to the Texas Instruments LM25118 and LM5118 to implement a buck-boost converter, or LM5158 to implement a SEPIC converter, or the LM5160 and LM5161 to implement a buck converter.

A bypass capacitor must be placed close to the VCC and PGND pins. In this application, 2.2µF, 16V ceramic capacitor is selected.