SNVSCM3 June 2024 LM5171
PRODUCTION DATA
SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
---|---|---|---|---|---|---|
HV Port (HV1, HV2) | ||||||
ISHUTDOWN1 | HV1 pin current in shutdown mode | VUVLO = 0V | 10 | µA | ||
ISHUTDOWN2 | HV2 pin current in shutdown mode | VUVLO = 0V | 10 | µA | ||
IOPERATING | HV1 and HV2 pin current in operating | VUVLO > 2.6V, VVCC > 9V | 1 | mA | ||
VCC Bias Supply (VCC) | ||||||
VVCC_reg | VCC LDO regulation setting point | VHV1 > 10V | 8.55 | 9 | 9.45 | V |
VCCUVLO | VCC under voltage detection | VCC falling | 7.7 | 8 | 8.2 | V |
VCCHYS | VCC UVLO hysteresis | VCC rising | 8.2 | 8.5 | 8.7 | V |
IVCC_SD | VCC sink current in shutdown mode | VUVLO = 0V, VVCC=10V | 25 | µA | ||
IVCC_SB | VCC sink current in standby: no switching | VUVLO > 2.6V, VVCC > 9V, EN1=EN2=0V | 10 | mA | ||
VDD Analog Bias Supply (VDD) | ||||||
VVDD | VDD voltage | VUVLO > 2.6V, VVCC > 9V | 4.75 | 5 | 5.25 | V |
VDDUV | VDD undervoltage detection | VDD falling | 4.25 | 4.5 | 4.75 | V |
VDDHYS | VDD UVLO hysteresis | VDD rising above VDDUV | 0.1 | 0.2 | 0.3 | V |
IVDD | VDD source current limit | VVDD = 4.6V | 10 | mA | ||
VOLTAGE REFERENCE (VREF) | ||||||
VREF | Voltage reference | VUVLO > 2.6V, VVCC > 9V, VVDD > VDDUV | 3.465 | 3.500 | 3.535 | V |
IVREF | VREF source current limit | VVREF = 3.5V | 2 | mA | ||
Master ON/OFF Control (UVLO) | ||||||
VUVLO_TH | UVLO release threshold | UVLO voltage rising | 2.4 | 2.5 | 2.6 | V |
IHYS | UVLO hysteresis current | UVLO source current when VUVLO > 2.6V | 21 | 25 | 29 | µA |
VRES | UVLO shutdown and IC reset voltage threshold | UVLO voltage falling | 1 | 1.25 | 1.5 | V |
UVLO shutdown release | UVLO voltage rising above VRES | 0.15 | 0.25 | 0.35 | V | |
tUVLO | UVLO 2.5V threshold glitch filter | UVLO voltage both rising and falling | 2.5 | µs | ||
tVRES | UVLO 1.25V VRES threshold glitch filter | 5 | 10 | µs | ||
UVLO internal pull-down current | 100 | nA | ||||
Enable Inputs EN1 and EN2 | ||||||
VIL | Enable input low state | The driver outputs disabled | 1.0 | V | ||
VIH | Enable input high state | The driver outputs enabled | 2.0 | V | ||
Internal pulldown impedance | EN1, EN2 logic inputs internal pulldown resistor | 1 | MegΩ | |||
EN glitch filter time (the rising and falling edges) | 2.5 | µs | ||||
DIRECTION COMMANDS (DIR1, DIR2) | ||||||
VDIR1, VDIR2 | Command for current flowing from LV-Port to HV-Port (boost mode 12 V to 48 V), for CH-1 and CH-2, respectively | Actively pulled low by external circuit | 1 | V | ||
VDIR1, VDIR2 | Command for current flowing from HV-Port to LV-Port (buck mode 48 V to 12 V), for CH-1 and CH-2, respectively | Actively pulled high by external circuit | 2 | V | ||
VDIR1, VDIR2 | Standby (invalid DIR command) | DIR pin (DIR1 or DIR2) neither active High nor active Low | 1.5 | V | ||
DIR glitch filter (the rising and falling edges) | Both Rising and Falling Edges | 10 | µs | |||
ISET INPUTS (ISET1, ISET2) | ||||||
ISET DC Offset Voltage | 1.0 | V | ||||
GISET | Gain of the regulated inductor DC current sense voltage to ISET voltage | |VCSA – VCSB| = 50mV | 25 | mV/V | ||
ISET internal pull-down current sink | 75 | 200 | nA | |||
Output Current Monitor (IMON1, IMON2) | ||||||
Gain of IMON1 and IMON2 current source versus channel current sense voltage | |CSA-CSB| = 50mV, CONFIG = 'Inductor current monitor", VDIR > 2V | 2 | µA/mV | |||
Gain of IMON1 and IMON2 current source versus channel current sense voltage | |CSA-CSB| = 50mV, CONFIG = 'Inductor current monitor", VDIR < 1V | 2 | uA/mV | |||
Gain of IMON1 and IMON2 current source versus channel current sense voltage | |CSA-CSB| = 50mV, CONFIG = 'Output current monitor", VDIR < 1V, Duty cycle = 0.75 | 0.475 | 0.5 | 0.525 | uA/mV | |
Gain of IMON1 and IMON2 current source versus channel current sense voltage | |CSA-CSB| = 10mV, CONFIG = 'Inductor current monitor", VDIR > 2V | 2 | uA/mV | |||
Gain of IMON1 and IMON2 current source versus channel current sense voltage | |CSA-CSB| = 10mV, CONFIG = 'Inductor current monitor", VDIR < 1V | 1.96 | 2 | 2.04 | uA/mV | |
Gain of IMON1 and IMON2 current source versus channel current sense voltage | |CSA-CSB| = 10mV, CONFIG = 'Output current monitor", VDIR < 1V, Duty cycle = 0.75 | 0.475 | 0.5 | 0.525 | uA/mV | |
IMON1 and IMON2 DC offset current | |CSA-CSB| = 0mV | 50 | µA | |||
CURRENT SENSE AMPLIFIER (BOTH CHANNELS) | ||||||
GCS_BK1 | Gain of amplifier output to current sense voltage in buck mode | |VCSA – VCSB| = 50mV, VDIR > 2V | 40 | V/V | ||
GCS_BST1 | Gain of amplifier output to current sense voltage in boost mode | |VCSA – VCSB| = 50mV, VDIR < 1V | 40 | V/V | ||
GCS_BK2 | Gain of amplifier output to current sense voltage in buck mode | |VCSA – VCSB| = 10mV, VDIR > 2V | 40 | V/V | ||
GCS_BST2 | Gain of amplifier output to current sense voltage in boost mode | |VCSA – VCSB| = 10mV, VDIR < 1V | 40 | V/V | ||
TRANSCONDUCTION AMPLIFIER (COMP1, COMP2) | ||||||
Gm | Transconductance | 100 | µA/V | |||
ICOMP | Output source current limit | VISET = 4V, |VCSA – VCSB| = 0mV | 250 | µA | ||
Output sink current limit | VISET = 0V, VCSA – VCSB = 50mV in the buck mode, or VCSA – VCSB = -50mV in the boost mode | -250 | µA | |||
VOLTAGE LOOP ERROR AMPLIFIERS (VSET, LVFB, LVERR, HVFB, HVERR) | ||||||
AOL | Open loop gain | VVCC > 9 V, VVDD > VDDUV | 80 | dB | ||
FBW | Unity gain bandwidth | 2.1 | MHz | |||
VOS | Input offset voltage | 5 | mV | |||
VERR_MIN | Minimum amplifier output voltage | Sourcing 2mA | 4 | V | ||
VERR_MAX | Maximum amplifier output voltage | Sinking 2mA | 0.5 | V | ||
PWM Comparator | ||||||
COMP to output delay | 50 | ns | ||||
COMP to PWM comparator offset | 1 | V | ||||
TOFF_MIN | Minimum off time | 100 | 150 | ns | ||
PEAK CURRENT LIMIT (IPK) | ||||||
GIPK_BK1 | Gain from current sense voltage to cycle-by-cycle limit threshold voltage given at IPK pin, in buck mode | VIPK = 3V, VDIR >2V | 45 | 50 | 55 | mV/V |
GIPK_BK2 | Gain from current sense voltage to cycle-by-cycle limit threshold voltage given at IPK pin, in buck mode | VIPK = 1V, VDIR >2V | 45 | 50 | 55 | mV/V |
GIPK_BST1 | Gain from current sense voltage to cycle-by-cycle limit threshold voltage given at IPK pin, in boost mode | VIPK = 3V, VDIR <1V | 45 | 50 | 55 | mV/V |
GIPK_BST2 | Gain from current sense voltage to cycle-by-cycle limit threshold voltage given at IPK pin, in boost mode | VIPK = 1V, VDIR <1V | 45 | 50 | 55 | mV/V |
OVER VOLTAGE PROTECTION (OVP) | ||||||
OVP threshold | 0.99 | 1 | 1.01 | V | ||
OVPHYS | OVP Hysteresis | 100 | mV | |||
tOVP | OVP Glitch Filter | 5 | us | |||
OSCILLATOR (OSC) | ||||||
FOSC | Oscillator frequency 1 | ROSC = 41.5kΩ, no external clock signal at SYNCI pin | 90 | 100 | 110 | kHz |
Oscillator frequency 2 | ROSC = 4.15kΩ, no external clock signal at SYNCI pin | 900 | 1000 | 1100 | kHz | |
VOSC | OSC pin DC voltage | OSC DC Level | 1 | V | ||
SYNCHRONIZATION CLOCK INPUT (SYNCI) | ||||||
VSYNIH | SYNCI input threshold for high state | 2 | V | |||
VSYNIL | SYNCI input threshold for low state | 1 | V | |||
Delay to establish synchronization | 0.8 x FOSC < FSYNCI < 1.2 x Fosc | 200 | us | |||
Internal pull-down impedance | VSYNCI = 2.5V | 1000 | kΩ | |||
SYNCHRONIZATION CLOCK OUTPUT (SYNCO) | ||||||
VSYNOH | SYNCO high state | 2.5 | V | |||
VSYNOL | SYNCO low state | 0.4 | V | |||
Sourcing current when SYNCO in high state | VSYNCO = 2.5V | 1 | mA | |||
Sinking current when SYNCO in low state | VSYNCO = 0.5V | 1 | mA | |||
SYNCO pulse width | 60 | 90 | 120 | ns | ||
SYNCO pulse delay for multiphase daisy chain connection | VOPT > 2V, RSYNCO > 61.9kΩ | 90 | Degree | |||
VOPT < 1V, RSYNCO > 61.9kΩ | 120 | Degree | ||||
BOOTSTRAP (HB1, HB2) | ||||||
VHB-UV | Bootstrap undervoltage threshold | (VHB – VSW) voltage rising | 6 | 6.5 | 7 | V |
VHB-UV-HYS | Bootstrap undervoltage hysteresis | 0.5 | V | |||
IHB_LK | Bootstrap quiescent current | VHB – VSW = 10V, VHO – VSW = 0V | 100 | µA | ||
HIGH SIDE GATE DRIVERS (HO1, HO2) | ||||||
VOLH | HO low-state output voltage | IHO = 100mA | 0.1 | V | ||
VOHH | HO high-state output voltage | IHO = -100mA, VOHH = VHB - VHO | 0.15 | V | ||
HO rise time (10% to 90% pulse magnitude) | CLD = 1000pF | 5 | ns | |||
HO fall time (90% to 10% pulse magnitude | CLD = 1000pF | 4 | ns | |||
IOHH | HO peak source current | VHB – VSW = 10V | 4 | A | ||
IOLH | HO peak sink current | VHB – VSW = 10V | 5 | A | ||
LOW SIDE GATE DRIVERS (LO1, LO2) | ||||||
VOLL | LO low-state output voltage | ILO = 100mA | 0.1 | V | ||
VOHL | LO high-state output voltage | ILO = -100mA, VOHL = VVCC - VLO | 0.15 | V | ||
LO rise time (10% to 90% pulse magnitude) | CLD = 1000pF | 5 | ns | |||
LO fall time (90% to 10% pulse magnitude) | CLD = 1000pF | 4 | ns | |||
IOHL | LO peak source current | VVCC = 10V | 4 | A | ||
IOLL | LO peak sink current | VVCC = 10V | 5 | A | ||
INTERLEAVE PHASE DELAY FROM CH-2 To CH-1 (OPT) | ||||||
VOPTL | OPT Input Low State | OPT="0" | 1.0 | V | ||
VOPTH | OPT Input High State | OPT="1" | 2.0 | V | ||
HO2rising -HO1rising in the buck mode, or LO2rising -LO1rising in the boost mode | OPT = "0" for 3 Phases in Daisy Chain Interleaving Operation | 240 | Degree | |||
HO2rising -HO1rising in the buck mode, or LO2rising -LO1rising in the boost mode | OPT= "1" for 1, 2, or 4 phases in Daisy Chain Interleaving Operation | 180 | Degree | |||
Internal Pull down impedance | 1 | MegΩ | ||||
DEAD TIME and LATCHED SHUTDOWN (DT/SD) | ||||||
tDT | LO falling edge to HO rising edge delay | RDT = 19.1kΩ | 50 | ns | ||
HO falling edge to LO rising edge delay | RDT = 19.1kΩ | 50 | ns | |||
VDT | DC voltage level for dead time programming | 1.2 | V | |||
DC voltage level for adaptive dead time programming | 3.1 | V | ||||
VADPT | HO-SW or LO-GND voltage threshold to enable cross output for adaptive dead time scheme | VVCC > 9V, (VHB – VSW) > 8V, HO or LO voltage falling | 1.5 | V | ||
tADPT | LO falling edge to HO rising edge delay | VDT = VVDD | 40 | ns | ||
HO falling edge to LO rising edge delay | VDT = VVDD | 40 | ns | |||
tSD | Latched shutdown glitch filter | 1.875 | 2.5 | 3.125 | µs | |
RSD | Shutdown latch pulldown resistance | Resistor in series with an external pull-down NFET | 2 | kΩ | ||
SOFT START and FORCED PWM and DIODE EMULATION PRGRAMMING (SS/DEM1, SS/DEM2) | ||||||
ISS | SS charging current source during startup | VSS ≤ 3.3V, VEN > 2V, VUVLO > 2.5V, DIR < 1 or DIR > 2 | 70 | µA | ||
ISS | SS charging current source after startup | VSS ≥ 3.9V, VEN > 2V, VUVLO > 2.5V, DIR < 1 or DIR > 2 | 50 | µA | ||
SS to gm input offset | 1 | V | ||||
RSS | SS discharge device Rds(ON) | VSS = 2V | 20 | Ω | ||
VSS_LOW | SS discharge completion threshold | Once it is discharged by internal logic | 0.3 | V | ||
CONFIGURATIONS (CFG) | ||||||
RCFG1 | I2C Address: b0100000. IMON = Inductor Current | 0 | kΩ | |||
RCFG2 | I2C Address: b0100001. IMON = Inductor Current | 0.316 | 0.324 | kΩ | ||
RCFG3 | I2C Address: b0100010. IMON = Inductor Current | 0.649 | 0.665 | kΩ | ||
RCFG4 | I2C Address: b0100011. IMON = Inductor Current | 1.1 | 1.13 | kΩ | ||
RCFG5 | I2C Address: b0100100. IMON = Inductor Current | 1.65 | 1.69 | kΩ | ||
RCFG6 | I2C Address: b0100101. IMON = Inductor Current | 2.43 | 2.49 | kΩ | ||
RCFG7 | I2C Address: b0100110. IMON = Inductor Current | 3.32 | 3.4 | kΩ | ||
RCFG8 | I2C Address: b0100111. IMON = Inductor Current | 4.53 | 4.64 | kΩ | ||
RCFG9 | I2C Address: b0100111. IMON = Output Current | 6.65 | 6.81 | kΩ | ||
RCFG10 | I2C Address: b0100110. IMON = Output Current | 10.2 | 10.5 | kΩ | ||
RCFG11 | I2C Address: b0100101. IMON = Output Current | 13.7 | 14.0 | kΩ | ||
RCFG12 | I2C Address: b0100100. IMON = Output Current | 18.7 | 19.1 | kΩ | ||
RCFG13 | I2C Address: b0100011. IMON = Output Current | 26.1 | 26.7 | kΩ | ||
RCFG14 | I2C Address: b0100010. IMON = Output Current | 37.4 | 38.3 | kΩ | ||
RCFG15 | I2C Address: b0100001. IMON = Output Current | 60.4 | 61.9 | kΩ | ||
RCFG16 | I2C Address: b0100000. IMON = Output Current | 95.3 | 97.6 | kΩ | ||
I2C INTERFACE (SLC, SDA) | ||||||
VSDAL | SDA input low state | 1.0 | V | |||
VSDAH | SDA input high state | 2.0 | V | |||
VSCLL | SCL input low state | 1.0 | V | |||
VSCLH | SCL input high state | 2.0 | V | |||
Thermal Shutdown | ||||||
TJ_SD | Thermal shutdown | 155 | 175 | ℃ | ||
Thermal shutdown hysteresis | 15 | ℃ |