SNVSCR9 October   2024 LM61495T-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Output Voltage Selection
      2. 7.3.2  Enable EN Pin and Use as VIN UVLO
      3. 7.3.3  SYNC/MODE Uses for Synchronization
      4. 7.3.4  Clock Locking
      5. 7.3.5  Adjustable Switching Frequency
      6. 7.3.6  RESET Output Operation
      7. 7.3.7  Internal LDO, VCC UVLO, and BIAS Input
      8. 7.3.8  Bootstrap Voltage and VCBOOT-UVLO (CBOOT Pin)
      9. 7.3.9  Adjustable SW Node Slew Rate
      10. 7.3.10 Spread Spectrum
      11. 7.3.11 Soft Start and Recovery From Dropout
      12. 7.3.12 Overcurrent and Short-Circuit Protection
      13. 7.3.13 Hiccup
      14. 7.3.14 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
        1. 7.4.3.1 Peak Current Mode Operation
        2. 7.4.3.2 Auto Mode Operation
          1. 7.4.3.2.1 Diode Emulation
        3. 7.4.3.3 FPWM Mode Operation
        4. 7.4.3.4 Minimum On-time (High Input Voltage) Operation
        5. 7.4.3.5 Dropout
        6. 7.4.3.6 Recovery from Dropout
        7. 7.4.3.7 Other Fault Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Choosing the Switching Frequency
        2. 8.2.2.2  Setting the Output Voltage
        3. 8.2.2.3  Inductor Selection
        4. 8.2.2.4  Output Capacitor Selection
        5. 8.2.2.5  Input Capacitor Selection
        6. 8.2.2.6  BOOT Capacitor
        7. 8.2.2.7  BOOT Resistor
        8. 8.2.2.8  VCC
        9. 8.2.2.9  CFF and RFF Selection
        10. 8.2.2.10 RSPSP Selection
        11. 8.2.2.11 RT Selection
        12. 8.2.2.12 RMODE Selection
        13. 8.2.2.13 External UVLO
        14. 8.2.2.14 Maximum Ambient Temperature
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Ground and Thermal Considerations
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Glossary
    7. 9.7 Electrostatic Discharge Caution
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
  • VAM|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Capacitor Selection

The output capacitor value and ESR determine the output voltage ripple and load transient performance. The output capacitor is usually limited by the load transient requirements rather than the output voltage ripple. Table 8-3 can be used to find capacitor values for COUT and CFF for a few common applications. Note that 4.99kΩ RFF must be used in series with CFF. In this example, good transient performance is desired, giving 4 × 47µF ceramic + 220µF electrolytic as the output capacitor and 15pF as CFF.

Table 8-3 Selected Output Capacitor and CFF Values
FREQUENCYIOUTTRANSIENT PERFORMANCE3.3V OUTPUT5V OUTPUT
COUTCFFCOUTCFF
2.2MHz 10A Minimum 4 × 22µF ceramic 15pF 2 × 22µF ceramic + 220µF electrolytics 15pF
2.2MHz 10A Better Transient 4 × 22µF ceramic + 220µF electrolytics 15pF 2 × 22µF ceramic + 220µF electrolytics 15pF
2.2MHz 8A Minimum 5 × 22µF ceramic 15pF 3 × 22µF ceramic 15pF
2.2MHz8ABetter Transient5 × 22µF ceramic + 220µF electrolytic15pF3 × 22µF ceramic + 220µF electrolytic15pF