SNOS792E May   1999  – December 2024 LM6172

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics ±15V
    6. 5.6 Electrical Characteristics ±5V
    7. 5.7 Typical Characteristics: D (SOIC, 8) Package
    8. 5.8 Typical Characteristics: P (PDIP, 8) Package
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Slew Rate
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Circuit Operation
      2. 7.1.2 Reduce Settling Time
      3. 7.1.3 Drive Capacitive Loads
      4. 7.1.4 Compensation for Input Capacitance
      5. 7.1.5 Termination
    2. 7.2 Typical Application
      1. 7.2.1 Application Circuits
    3. 7.3 Power Supply Recommendations
      1. 7.3.1 Power Supply Bypassing
      2. 7.3.2 Power Dissipation
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Printed Circuit Boards and High-Speed Op Amps
        2. 7.4.1.2 Using Probes
        3. 7.4.1.3 Components Selection and Feedback Resistor
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • P|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Reduce Settling Time

The LM6172 has a very fast slew rate that causes overshoot and undershoot. To reduce settling time on LM6172, a 1kΩ resistor can be placed in series with the input signal to decrease slew rate. A feedback capacitor can also be used to reduce overshoot and undershoot. This feedback capacitor serves as a zero to increase the stability of the amplifier circuit. A 2pF feedback capacitor is recommended for initial evaluation. When the LM6172 is configured as a buffer, a feedback resistor of 1kΩ must be added in parallel to the feedback capacitor.

Another possible source of overshoot and undershoot comes from capacitive load at the output. See also Section 7.1.3.