SNVSBW0B October 2022 – August 2024 LM64440-Q1 , LM64460-Q1
PRODUCTION DATA
Table 8-1 shows the intended input, output, and performance parameters for this application example. The converter operates in dropout during cold crank when the input voltage decreases to 5V, with the output voltage slightly below the 5V setpoint.
DESIGN PARAMETER | VALUE |
---|---|
Input voltage range (for constant fSW) | 6V to 18V |
Minimum transient input voltage, cold crank | 5V |
Maximum transient input voltage, load dump | 36V |
Output voltage and full-load current | 5V, 6A |
Switching frequency | 2.1MHz |
IC input current, no-load | < 10µA |
IC shutdown current | < 1µA |
Table 8-2 gives the selected buck converter power-stage components with availability from multiple vendors. This design uses a low-DCR inductor and all-ceramic output capacitor implementation.
REF DES | QTY | SPECIFICATION | VENDOR (1) | PART NUMBER | |
---|---|---|---|---|---|
CIN | 2 | 10µF, 50V, X7R, 1206, ceramic, AEC-Q200 | Samsung | CL31Y106KBKVPNE | |
TDK | CGA5L1X7R1H106K | ||||
10µF, 50V, X7S, 1210, ceramic, AEC-Q200 | Murata | GCM32EC71H106KA03 | |||
TDK | CGA6P3X7S1H106M | ||||
COUT | 2 | 47µF, 6.3V, X7R, 1210, ceramic, AEC-Q200 | Murata | GCM32ER70J476KE19L | |
47µF, 10V, X7S, 1210, ceramic, AEC-Q200 | TDK | CGA6P1X7S1A476M | |||
Murata | GCM32EC71A476KE02 | ||||
3 | 22µF, 16V, X7R, 1210, ceramic, AEC-Q200 | TDK | CGA6P1X7R1C226M | ||
LO | 1 | 0.76µH, 4.9mΩ, 11.8A, 4.0mm × 4.0mm × 3.1mm, AEC-Q200 | Coilcraft | XGL4030-761MEC | |
1µH, 9.1mΩ, 7.9A, 4.2mm × 4.0mm × 2.1mm, AEC-Q200 | Cyntec | VCHA042A-1R0M | |||
1µH, 9.6mΩ, 14.7A, 5.3mm × 5.1mm × 3.0mm, AEC-Q200 | TDK | SPM5030VT-1R0M-D | |||
1µH, 12mΩ, 11.6A, 4.1mm × 4.1mm × 3.1mm, AEC-Q200 | Würth Electronik | 74438357010 | |||
U1 | 1 | LM64460-Q1 synchronous buck converter, AEC-Q100 | Adjustable | Texas Instruments | LM64460APPQRYFRQ1 |
Fixed 5V | LM64460CPPQRYFRQ1 |
More generally, the LM64460-Q1 converter is designed to operate with a wide range of external components and system parameters. However, the integrated loop compensation is optimized for a certain range of buck inductance and output capacitance. As a starting point, Table 8-3 provides typical component values for several common application configurations.
fSW (kHz) | VOUT (V) | LO (µH) | COUT-EFF(min) (µF) | Typical COUT Components (1210, X7R) |
RFBT (kΩ) | RFBB (kΩ) | CFF (pF) | RFF (kΩ) |
---|---|---|---|---|---|---|---|---|
2100 | 3.3 | 0.68 | 50 | 3 × 47µF, 6.3V or 4 × 22µF, 16V | 100 | 43.2 | 10 | 1 |
2100 | 5 | 0.76 | 30 | 2 × 47µF, 10V or 3 × 22µF, 16V | 100 | 24.9 | 10 | 1 |
400 | 1.8 | 2.2 | 120 | 3 × 100µF, 4V | 80.6 | 100 | 22 | 1 |
400 | 3.3 | 3.3 | 70 | 3 × 47µF, 6.3V or 5 × 22µF, 16V | 100 | 43.2 | 15 | 1 |
400 | 5 | 4.7 | 50 | 3 × 47µF, 10V or 4 × 22µF, 16V | 100 | 24.9 | 15 | 1 |
400 | 12 | 6.8 | 20 | 3 × 22µF, 25V | 100 | 9.09 | 4.7 | 1 |
Note that the minimum output capacitances listed in Table 8-3 represents effective values for ceramic capacitors derated for DC bias voltage and temperature.