SNVSBW0A October   2022  – October 2023 LM64460-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
    1. 6.1 Wettable Flanks
    2. 6.2 Pinout Design for Clearance and FMEA
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Characteristics
    7. 7.7 Systems Characteristics
    8. 7.8 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Voltage Range (VIN1, VIN2)
      2. 8.3.2  Output Voltage Setpoint (FB)
      3. 8.3.3  Precision Enable and Input Voltage UVLO (EN)
      4. 8.3.4  MODE/SYNC Operation
        1. 8.3.4.1 Level-Dependent MODE/SYNC Control
        2. 8.3.4.2 Pulse-Dependent MODE/SYNC Control
      5. 8.3.5  Clock Locking
      6. 8.3.6  Power-Good Monitor (PGOOD)
      7. 8.3.7  Bias Supply Regulator (VCC, BIAS)
      8. 8.3.8  Bootstrap Voltage and UVLO (CBOOT)
      9. 8.3.9  Spread Spectrum
      10. 8.3.10 Soft Start and Recovery From Dropout
      11. 8.3.11 Overcurrent and Short-Circuit Protection
      12. 8.3.12 Thermal Shutdown
      13. 8.3.13 Input Supply Current
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Active Mode
        1. 8.4.3.1 CCM Mode
        2. 8.4.3.2 AUTO Mode – Light-Load Operation
          1. 8.4.3.2.1 Diode Emulation
          2. 8.4.3.2.2 Frequency Foldback
        3. 8.4.3.3 FPWM Mode – Light-Load Operation
        4. 8.4.3.4 Minimum On-Time (High Input Voltage) Operation
        5. 8.4.3.5 Dropout
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design 1 – Automotive Synchronous Buck Regulator at 2.1 MHz
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 9.2.1.2.2  Setting the Output Voltage
          3. 9.2.1.2.3  Choosing the Switching Frequency
          4. 9.2.1.2.4  Inductor Selection
          5. 9.2.1.2.5  Output Capacitor Selection
          6. 9.2.1.2.6  Input Capacitor Selection
          7. 9.2.1.2.7  Bootstrap Capacitor
          8. 9.2.1.2.8  VCC Capacitor
          9. 9.2.1.2.9  BIAS Power Connection
          10. 9.2.1.2.10 Feedforward Network
          11. 9.2.1.2.11 Input Voltage UVLO
        3. 9.2.1.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Thermal Design and Layout
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
      2. 10.1.2 Development Support
        1. 10.1.2.1 Custom Design With WEBENCH® Tools
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Spread Spectrum

The purpose of spread spectrum is to eliminate peak emissions at specific frequencies by spreading these emissions across a wider range of frequencies. In most systems containing the LM64460-Q1, low-frequency conducted emissions from the first few harmonics of the switching frequency can be easily filtered. A more difficult design criterion is reduction of the emissions at higher harmonics that fall in the FM frequency band. These harmonics often couple to the environment through electric fields around the switch node and inductor. The LM64460-Q1 uses a ±2% spread of frequencies, which can spread energy smoothly across the FM and TV bands but is small enough to limit subharmonic emissions below the converter switching frequency. Peak emissions at the switching frequency of the converter are only reduced slightly, by less than 1 dB, while peaks in the FM band are typically reduced by more than 6 dB.

Use the MODE/SYNC pin to enable or disable spread spectrum in the LM64460-Q1. The LM64460-Q1 uses a cycle-to-cycle frequency hopping method based on a linear feedback shift register (LFSR). This intelligent pseudo-random generator limits cycle-to-cycle frequency changes to limit output ripple. The pseudo-random pattern repeats at less than 1.5 Hz, which is below the audio band.

Spread spectrum is only available while the clock of the LM64460-Q1 is free running at its natural frequency. Any of the following conditions overrides spread spectrum, turning it off:

  • The clock is slowed when operating in dropout.
  • The clock is slowed at light load in AUTO mode. In FPWM mode, spread spectrum is active even if there is no load.
  • At a high-input-voltage to low-output-voltage conversion ratio when the device operates at its minimum on time, the internal clock is slowed, disabling spread spectrum. Refer to the Timing Characteristics for more detail.
  • The clock is synchronized to an external clock signal.