SNVSBX7A September   2023  – June 2024 LM70840-Q1 , LM70860-Q1 , LM70880-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN)
      2. 7.3.2  High-Voltage Bias Supply Regulator (VCC, BIAS, VDDA)
      3. 7.3.3  Enable (EN)
      4. 7.3.4  Power-Good Monitor (PG)
      5. 7.3.5  Switching Frequency (RT)
      6. 7.3.6  Dual Random Spread Spectrum (DRSS)
      7. 7.3.7  Soft Start
      8. 7.3.8  Output Voltage Setpoint (FB)
      9. 7.3.9  Minimum Controllable On-Time
      10. 7.3.10 Error Amplifier and PWM Comparator (FB, EXTCOMP)
      11. 7.3.11 Slope Compensation
      12. 7.3.12 Shunt Current Sensing
      13. 7.3.13 Hiccup Mode Current Limiting
      14. 7.3.14 Device Configuration (CONFIG)
      15. 7.3.15 Single-Output Dual-phase Operation
      16. 7.3.16 Pulse Frequency Modulation (PFM) / Synchronization
      17. 7.3.17 Thermal Shutdown (TSD)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
      4. 7.4.4 Sleep Mode
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Power Train Components
        1. 8.1.1.1 Buck Inductor
        2. 8.1.1.2 Output Capacitors
        3. 8.1.1.3 Input Capacitors
        4. 8.1.1.4 EMI Filter
      2. 8.1.2 Error Amplifier and Compensation
      3. 8.1.3 Maximum Ambient Temperature
        1. 8.1.3.1 Derating Curves
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – High Efficiency, Wide Input, 400-kHz Synchronous Buck Regulator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Custom Design With Excel Quickstart Tool
          3. 8.2.1.2.3 Buck Inductor
          4. 8.2.1.2.4 Current-Sense Resistance
          5. 8.2.1.2.5 Output Capacitors
          6. 8.2.1.2.6 Input Capacitors
          7. 8.2.1.2.7 Frequency Set Resistor
          8. 8.2.1.2.8 Feedback Resistors
          9. 8.2.1.2.9 Compensation Components
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Design 2 – High Efficiency 48V to 12V 400kHz Synchronous Buck Regulator
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Thermal Design and Layout
      3. 8.4.3 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
        1. 9.2.1.1 PCB Layout Resources
        2. 9.2.1.2 Thermal Design Resources
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Capacitors

Ordinarily, the output capacitor energy store of the regulator combined with the control loop response are prescribed to maintain the integrity of the output voltage within the dynamic (transient) tolerance specifications. The usual boundaries restricting the output capacitor in power management applications are driven by finite available PCB area, component footprint and profile, and cost. The capacitor parasitics—equivalent series resistance (ESR) and equivalent series inductance (ESL)—take greater precedence in shaping the load transient response of the regulator as the load step amplitude and slew rate increase.

The output capacitor, COUT, filters the inductor ripple current and provides a reservoir of charge for step-load transient events. Typically, ceramic capacitors provide extremely low ESR to reduce the output voltage ripple and noise spikes, while tantalum and electrolytic capacitors provide a large bulk capacitance in a relatively compact footprint for transient loading events.

Based on the static specification of peak-to-peak output voltage ripple denoted by ΔVOUT, choose an output capacitance that is larger than that given by Equation 13.

Equation 13. C O U T Δ I L 8 × F S W Δ V O U T 2 + R E S R × Δ I L 2

Figure 8-1 conceptually illustrates the relevant current waveforms during both load step-up and step-down transitions. As shown, the large-signal slew rate of the inductor current is limited as the inductor current ramps to match the new load-current level following a load transient. This slew-rate limiting exacerbates the deficit of charge in the output capacitor, which must be replenished as rapidly as possible during and after the load step-up transient. Similarly, during and after a load step-down transient, the slew rate limiting of the inductor current adds to the surplus of charge in the output capacitor that must be depleted as quickly as possible.

LM70840-Q1 LM70860-Q1 LM70880-Q1  Load Transient Response Representation Showing COUT Charge Surplus or DeficitFigure 8-1 Load Transient Response Representation Showing COUT Charge Surplus or Deficit

In a typical regulator application of 12V input to low output voltage (for example, 3.3V), the load-off transient represents the worst case in terms of output voltage transient deviation. In that conversion ratio application, the steady-state duty cycle is approximately 28% and the large-signal inductor current slew rate when the duty cycle collapses to zero is approximately –VOUT/L. Compared to a load-on transient, the inductor current takes much longer to transition to the required level. The surplus of charge in the output capacitor causes the output voltage to significantly overshoot. In fact, to deplete this excess charge from the output capacitor as quickly as possible, the inductor current must ramp below the nominal level following the load step. In this scenario, a large output capacitance can be advantageously employed to absorb the excess charge and minimize the voltage overshoot.

To meet the dynamic specification of output voltage overshoot during such a load-off transient (denoted as ΔVOVERSHOOT with step reduction in output current given by ΔIOUT), the output capacitance must be larger than:

Equation 14. C O U T L O × Δ I O U T 2 V O U T + Δ V O V E R S H O O T 2 - V O U T 2

The ESR of a capacitor is provided in the manufacturer data sheet either explicitly as a specification or implicitly in the impedance vs frequency curve. Depending on type, size and construction, electrolytic capacitors have significant ESR, 5mΩ and above, and relatively large ESL, 5nH to20 nH. PCB traces contribute some parasitic resistance and inductance as well. Ceramic output capacitors have low ESR and ESL contributions at the switching frequency, and the capacitive impedance component dominates. However, depending on package and voltage rating of the ceramic capacitor, the effective capacitance can drop quite significantly with applied DC voltage and operating temperature.

Ignoring the ESR term in Equation 13 gives a quick estimation of the minimum ceramic capacitance necessary to meet the output ripple specification. Two to four 47µF, 10V, X7R capacitors in 1206 or 1210 footprint is a common choice for a 5V output. Use Equation 14 to determine if additional capacitance is necessary to meet the load-off transient overshoot specification.

A composite implementation of ceramic and electrolytic capacitors highlights the rationale for paralleling capacitors of dissimilar chemistries yet complementary performance. The frequency response of each capacitor is accretive in that each capacitor provides desirable performance over a certain portion of the frequency range. While the ceramic provides excellent mid- and high-frequency decoupling characteristics with the low ESR and ESL to minimize the switching frequency output ripple, the electrolytic device with the large bulk capacitance provides low-frequency energy storage to cope with load transient demands.