SNOS760D May   1999  – February 2024 LM7171

PRODUCTION DATA  

  1.   1
  2. 1Features
  3. 2Applications
  4. 3Description
  5. 4Pin Configuration and Functions
  6. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics: ±15V
    6. 5.6 Electrical Characteristics: ±5V
    7. 5.7 Typical Characteristics: LM7171A
    8. 5.8 Typical Characteristics: LM7171B
  7. 6Application and Implementation
    1. 6.1 Application Information
      1. 6.1.1 Circuit Operation
      2. 6.1.2 Slew Rate Characteristic
        1. 6.1.2.1 Slew-Rate Limitation
      3. 6.1.3 Compensation for Input Capacitance
    2. 6.2 Typical Applications
    3. 6.3 Power Supply Recommendations
      1. 6.3.1 Power-Supply Bypassing
      2. 6.3.2 Termination
      3. 6.3.3 Driving Capacitive Loads
      4. 6.3.4 Power Dissipation
    4. 6.4 Layout
      1. 6.4.1 Layout Guidelines
        1. 6.4.1.1 Printed Circuit Board and High-Speed Op Amps
        2. 6.4.1.2 Using Probes
        3. 6.4.1.3 Component Selection and Feedback Resistor
  8. 7Device and Documentation Support
    1. 7.1 Receiving Notification of Documentation Updates
    2. 7.2 Support Resources
    3. 7.3 Trademarks
    4. 7.4 Electrostatic Discharge Caution
    5. 7.5 Glossary
  9. 8Revision History
  10. 9Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • P|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Slew-Rate Limitation

If the amplifier input signal amplitude is too large and the frequency too high, the amplifier is slew-rate limited. This limiting can cause ringing in the time domain and peaking in the frequency domain at the output of the amplifier.

For the AV = +2 curves, slight peaking occurs. This peaking at high frequency (> 100MHz) is due to a large input signal at a high enough frequency that exceeds the amplifier slew rate. The peaking in the frequency response does not limit the pulse response in the time domain, and the LM7171 is stable with a noise gain of ≥ +2.