SNOS879I August   1999  – May 2016 LM7301

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: 5-V DC
    6. 6.6 Electrical Characteristics: AC
    7. 6.7 Electrical Characteristics: 2.2-V DC
    8. 6.8 Electrical Characteristics: 30-V DC
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Feature Description
      1. 7.2.1 Capacitive Load Driving
      2. 7.2.2 Transient Response
      3. 7.2.3 Wide Supply Range
      4. 7.2.4 Specific Advantages of 5-Pin SOT-23 (TinyPak)
      5. 7.2.5 Low-Distortion, High-Output Drive Capability
    3. 7.3 Device Functional Modes
      1. 7.3.1 Stability Considerations
      2. 7.3.2 Power Dissipation
  8. Applications and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Handheld Remote Controls
      2. 8.1.2 Remote Microphone in Personal Computers
      3. 8.1.3 Optical Line Isolation for Modems
    2. 8.2 Typical Applications
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Selecting RSENSE
        2. 8.2.2.2 Selecting R1, and R3 Values
        3. 8.2.2.3 R1, R2 Selection
        4. 8.2.2.4 Error Terms Expressions
        5. 8.2.2.5 Frequency Response
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Community Resource
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

10 Layout

10.1 Layout Guidelines

For best operational performance of the device, TI recommends good printed-circuit board (PCB) layout practices. Low-loss, 0.1-μF bypass capacitors should be connected between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable to single supply applications.

10.2 Layout Example

LM7301 Schematic_Representation_SNOS879I.gif Figure 31. Schematic Representation
LM7301 Operation_Amplifier_Board_SNOS879I.gif Figure 32. Operational Amplifier Board Layout for Noninverting Configuration