SNVSAH5A September   2017  – May 2020 LM73605 , LM73606

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Efficiency versus Load Current VOUT = 5 V, fSW = 500 kHz, Auto Mode
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Characteristics
    7. 6.7 Switching Characteristics
    8. 6.8 System Characteristics
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Synchronous Step-Down Regulator
      2. 7.3.2  Auto Mode and FPWM Mode
      3. 7.3.3  Fixed-Frequency Peak Current-Mode Control
      4. 7.3.4  Adjustable Output Voltage
      5. 7.3.5  Enable and UVLO
      6. 7.3.6  Internal LDO, VCC_UVLO, and BIAS Input
      7. 7.3.7  Soft Start and Voltage Tracking
      8. 7.3.8  Adjustable Switching Frequency
      9. 7.3.9  Frequency Synchronization and Mode Setting
      10. 7.3.10 Internal Compensation and CFF
      11. 7.3.11 Bootstrap Capacitor and VBOOT-UVLO
      12. 7.3.12 Power-Good and Overvoltage Protection
      13. 7.3.13 Overcurrent and Short-Circuit Protection
      14. 7.3.14 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
        1. 7.4.3.1 CCM Mode
        2. 7.4.3.2 DCM Mode
        3. 7.4.3.3 PFM Mode
        4. 7.4.3.4 Fault Protection Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design With WEBENCH® Tools
        2. 8.2.2.2  Output Voltage Setpoint
        3. 8.2.2.3  Switching Frequency
        4. 8.2.2.4  Input Capacitors
        5. 8.2.2.5  Inductor Selection
        6. 8.2.2.6  Output Capacitor Selection
        7. 8.2.2.7  Feedforward Capacitor
        8. 8.2.2.8  Bootstrap Capacitors
        9. 8.2.2.9  VCC Capacitor
        10. 8.2.2.10 BIAS
        11. 8.2.2.11 Soft Start
        12. 8.2.2.12 Undervoltage Lockout Setpoint
        13. 8.2.2.13 PGOOD
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Layout For EMI Reduction
      2. 10.1.2 Ground Plane
      3. 10.1.3 Optimize Thermal Performance
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design With WEBENCH® Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Support Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

PFM Mode

Pulse-frequency-modulation (PFM) mode is activated when peak current is lower than IPEAK-MIN, only in auto mode. Peak current is kept constant and VOUT is regulated by frequency. Efficiency is greatly improved by lowered switching losses, especially at very light loads.

In PFM operation, a small DC positive offset appears on VOUT. The lower the frequency is folded back in PFM, the more the DC offset is on VOUT. See the VOUT regulation curves in the Application Curves. If the DC offset on VOUT is not acceptable, a dummy load at VOUT, or lower RFBT and RFBB resistance values can be used to reduce the offset. Alternatively, the device can be run in FPWM mode where the switching frequency is constant, and no offset is added to affect the VOUT accuracy unless tON_MIN is reached.