SNOSDB7 December   2020 LM74500-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
  7. Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Voltage
      2. 8.3.2 Charge Pump
      3. 8.3.3 Gate Driver
      4. 8.3.4 Enable
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Conduction Mode
  9. Application and Implementation
    1. 9.1 Reverse Battery Protection for Automotive Body Control Module Applications
    2. 9.2 Reverse Polarity Protection
    3. 9.3 Application Information
      1. 9.3.1 Typical Application
        1. 9.3.1.1 Design Requirements
        2. 9.3.1.2 Detailed Design Procedure
          1. 9.3.1.2.1 Design Considerations
          2. 9.3.1.2.2 MOSFET Selection
          3. 9.3.1.2.3 Charge Pump VCAP, Input and Output Capacitance
        3. 9.3.1.3 Selection of TVS Diodes for 12-V Battery Protection Applications
        4. 9.3.1.4 Selection of TVS Diodes and MOSFET for 24-V Battery Protection Applications
        5. 9.3.1.5 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Support Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Conduction Mode

For the LM74500-Q1 to operate in conduction mode the gate driver must be enabled as described in the Gate Driver section. If these conditions are achieved the GATE pin is internally connected to the VCAP pin resulting in the GATE to SOURCE voltage being approximately the same as the VCAP to SOURCE voltage. By connecting VCAP to GATE the external MOSFET's RDS(ON) is minimized reducing the power loss of the external MOSFET when forward currents are large.