SNOSD87A July   2021  – February 2022 LM74501-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Voltage
      2. 8.3.2 Charge Pump
      3. 8.3.3 Enable
      4. 8.3.4 Gate Driver
      5. 8.3.5 SW (Battery Voltage Monitoring)
      6. 8.3.6 Gate Discharge Timer
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Full Conduction Mode
      3. 8.4.3 VDS Clamp
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Reverse Battery Protection
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Design Considerations
        2. 9.2.2.2 MOSFET Selection
        3. 9.2.2.3 Gate Discharge Timer Capacitor Selection (CT)
        4. 9.2.2.4 Charge Pump VCAP, Input and Output Capacitance
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Charge Pump

The charge pump supplies the voltage necessary to drive the external N-channel MOSFET. An external charge pump capacitor is placed between VCAP and SOURCE pins to provide energy to turn on the external MOSFET. In order for the charge pump to supply current to the external capacitor, the EN pin voltage must be above the specified input high threshold, V(EN_IH). When enabled, the charge pump sources a charging current of 300 µA (typical). If EN pins is pulled low, then the charge pump remains disabled. To ensure that the external MOSFET can be driven above its specified threshold voltage, the VCAP-to-SOURCE voltage must be above the undervoltage lockout threshold, typically 6.5 V, before the internal gate driver is enabled. Use Equation 1 to calculate the initial gate driver enable delay.

Equation 1.

where

  • C(VCAP) is the charge pump capacitance connected across SOURCE and VCAP pins.
  • V(VCAP_UVLOR) is 6.5 V (typical).

To remove any chatter on the gate drive, approximately 800 mV of hysteresis is added to the VCAP undervoltage lockout. The charge pump remains enabled until the VCAP-to-SOURCE voltage reaches 12.4 V (typical), at which point the charge pump is disabled decreasing the current draw on the SOURCE pin. The charge pump remains disabled until the VCAP-to-SOURCE voltage is below to 11.6 V (typical), at which point the charge pump is enabled. The voltage between VCAP and SOURCE continues to charge and discharge between 11.6 V and 12.4 V as shown in Figure 8-1. By enabling and disabling the charge pump, the operating quiescent current of the LM74501-Q1 is reduced. When the charge pump is disabled, it sinks 5 µA (typical).

Figure 8-1 Charge Pump Operation