SNOSDE0A February   2022  – May 2022 LM74502-Q1 , LM74502H-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Input Voltage (VS)
      2. 9.3.2 Charge Pump (VCAP)
      3. 9.3.3 Gate Driver (GATE an SRC)
        1. 9.3.3.1 Inrush Current Control
      4. 9.3.4 Enable and Undervoltage Lockout (EN/UVLO)
      5. 9.3.5 Overvoltage Protection (OV)
    4. 9.4 Device Functional Modes
      1. 9.4.1 Shutdown Mode
      2. 9.4.2 Conduction Mode
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Design Considerations
        2. 10.2.2.2 MOSFET Selection
        3. 10.2.2.3 Overvoltage Protection
        4. 10.2.2.4 Charge Pump VCAP, Input and Output Capacitance
      3. 10.2.3 Selection of TVS Diodes for 12-V Battery Protection Applications
      4. 10.2.4 Selection of TVS Diodes and MOSFET for 24-V Battery Protection Applications
      5. 10.2.5 Application Curves
    3. 10.3 Surge Stopper Using LM74502-Q1, LM74502H-Q1
      1. 10.3.1 VS Capacitance, Resistor R1 and Zener Clamp (DZ)
      2. 10.3.2 Overvoltage Protection
      3. 10.3.3 MOSFET Selection
    4. 10.4 Fast Turn-On and Turn-Off High Side Switch Driver Using LM74502H-Q1
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Receiving Notification of Documentation Updates
    2. 13.2 Support Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The LM74502-Q1, LM74502H-Q1 controller has all the features necessary to implement an efficient and fast reverse polarity protection circuit with load disconnect function. This easy to use reverse polarity protection controller is paired with an external back-to-back connected N-channel MOSFETs to replace other reverse polarity schemes such as a P-channel MOSFETs. The wide input supply of 4 V to 65 V allows protection and control of 12-V and 24-V automotive battery powered ECUs. The device can withstand and protect the loads from negative supply voltages down to –65 V. An integrated charge pump drives external back-to-back connected N-channel MOSFETs with gate drive voltage of approximately 12.4 V to realize reverse polarity protection and load disconnect function in case of overvoltage and undervoltage event. LM74502-Q1 with it's typical gate drive strength of 60 μA provides smooth start-up with inherent inrush current control due to its lower gate drive strength. LM74502H-Q1 with it's 11-mA typical peak gate drive strength is suitable for applications which need faster turn on such as load switch applications. LM74502-Q1 features an adjustable overvoltage cutoff protection feature using a programming resistor divider to OV terminal. LM74502-Q1 features enable control. With the enable pin low during the standby mode, both the external MOSFETs and controller is off and draws a very low 1 μA of current.