SNOSDF6 October   2023 LM74930-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Charge Pump
      2. 7.3.2  Dual Gate Control (DGATE, HGATE)
        1. 7.3.2.1 Load Disconnect Switch Control (HGATE, OUT)
        2. 7.3.2.2 Reverse Battery Protection (A, C, DGATE)
      3. 7.3.3  Overcurrent Protection (CS+, CS-, ILIM, IMON, TMR)
      4. 7.3.4  Overcurrent Protection with Circuit Breaker (ILIM, TMR)
      5. 7.3.5  Overcurrent Protection With Latch-Off
      6. 7.3.6  Short-Circuit Protection (ISCP)
        1. 7.3.6.1 Device Wake-Up With Output Short-Circuit Condition
      7. 7.3.7  Analog Current Monitor Output (IMON)
      8. 7.3.8  Overvoltage and Undervoltage Protection (OV, UVLO, OVCLAMP)
      9. 7.3.9  Disabling Reverse Current Blocking Functionality (MODE)
      10. 7.3.10 Device Functional Modes
        1. 7.3.10.1 Low Quiescent Current Shutdown Mode (EN)
  9. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application: 200-V Unsuppressed Load Dump Protection Application
      1. 8.2.1 Design Requirements for 200-V Unsuppressed Load Dump Protection
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  VS Capacitance, Resistor R1 and Zener Clamp (DZ)
        2. 8.2.2.2  Charge Pump Capacitance VCAP
        3. 8.2.2.3  Input and Output Capacitance
        4. 8.2.2.4  Overvoltage and Undervoltage Protection Component Selection
        5. 8.2.2.5  Selection of Scaling Resistor (RSET) and Short-Circuit Protection Setting Resistor (RSCP)
        6. 8.2.2.6  Overcurrent Limit (ILIM), Circuit Breaker Timer (TMR), and Current Monitoring Output (IMON) Selection
        7. 8.2.2.7  Selection of Current Sense Resistor, RSNS
        8. 8.2.2.8  Hold-Up Capacitance
        9. 8.2.2.9  MOSFET Q1 Selection
        10. 8.2.2.10 MOSFET Q2 Selection
        11. 8.2.2.11 Input TVS Selection
      3. 8.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Transient Protection
      2. 8.4.2 TVS Selection for 12-V Battery Systems
      3. 8.4.3 TVS Selection for 24-V Battery Systems
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Reverse Battery Protection (A, C, DGATE)

A, C, DGATE comprises of Ideal Diode stage. Connect the Source of the external MOSFET to A, Drain to C and Gate to DGATE. The LM74930-Q1 has integrated input reverse polarity protection down to –65 V.

Before the DGATE driver is enabled, following conditions must be achieved:

  • The EN pin voltage must be greater than the specified input high voltage.
  • The CAP to VS voltage must be greater than the undervoltage lockout voltage.
  • Voltage at A pin must be greater than VA POR Rising threshold.
  • Voltage at VS pin must be greater than VS POR Rising threshold.
If the above conditions are not achieved, then the DGATE pin is internally connected to the A pin, assuring that the external MOSFET is disabled.

In LM74930-Q1 the voltage drop across the MOSFET is continuously monitored between the A and C pins, and the DGATE to A voltage is adjusted as needed to regulate the forward voltage drop at 10.5 mV (typ). This closed loop regulation scheme enables graceful turn off of the MOSFET during a reverse current event and ensures zero DC reverse current flow. This scheme ensures robust performance during slow input voltage ramp down tests. Along with the linear regulation amplifier scheme, the LM74930-Q1 also integrates a fast reverse voltage comparator. When the voltage drop across A and C reaches V(AC_REV) threshold then the DGATE goes low within 0.5-µs (typ). This fast reverse voltage comparator scheme ensures robust performance during fast input voltage ramp down tests such as input micro-shorts. The external MOSFET is turned ON back when the voltage across A and C hits V(AC_FWD) threshold within 2.8 µs (typ).