SNAS487B September   2009  – March 2015 LM98722

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 AC Timing Requirements
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
      1. 7.2.1 LM98722 Overall Chip Block Diagram
      2. 7.2.2 System Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Modes of Operation Introduction
      2. 7.3.2  Mode 3 - Three Channel Input/Synchronous Pixel Sampling
      3. 7.3.3  Mode 2 - Two Channel Input/Synchronous Pixel Sampling
      4. 7.3.4  Mode 1 - One Channel Input
      5. 7.3.5  CIS Lamp and Coefficient Modes
      6. 7.3.6  Clock Sources
        1. 7.3.6.1 User Provided Clock Signal
        2. 7.3.6.2 Crystal Oscillator Driver On-Chip
        3. 7.3.6.3 Clock Multiplication - Basic
        4. 7.3.6.4 Clock Multiplication - Flexible
      7. 7.3.7  Clock Sources - Additional Settings and Flexibility
      8. 7.3.8  Spread Spectrum Clock Generation (SSCG)
      9. 7.3.9  Typical EMI Cases and Recommended SSCG Settings
      10. 7.3.10 Recommended Master/Slave, Clock Source and SSCG Combinations and Settings
        1. 7.3.10.1 Master Mode Operation (LM98722 Controls Line Timing)
        2. 7.3.10.2 Slave Mode Operation (Host FPGA or ASIC Controls Line Timing)
        3. 7.3.10.3 SSCG Configuration/Usage Flow
        4. 7.3.10.4 Changing SSCG Settings
    4. 7.4 Device Functional Modes
      1. 7.4.1  Mode 3 - Three Channel Input/Synchronous Pixel Sampling
      2. 7.4.2  Mode 2 - Two Channel Input/Synchronous Pixel Sampling
      3. 7.4.3  Mode 1 - One Channel Input
      4. 7.4.4  Input Bias and Clamping
        1. 7.4.4.1 Input Bias and Clamping - AC Coupled Applications
      5. 7.4.5  Sample/Hold Mode
      6. 7.4.6  DC Coupled Applications
      7. 7.4.7  Input Source Follower Buffers
      8. 7.4.8  CDS Mode
      9. 7.4.9  VCLP DAC
      10. 7.4.10 Gain and Offset Correction
        1. 7.4.10.1 Analog Offset
        2. 7.4.10.2 Digital Offset
        3. 7.4.10.3 Even/Odd Offset Coefficients
      11. 7.4.11 LM98722 Typical Line Timing and Pixel Gain Regions
      12. 7.4.12 Automatic Black and White Level Calibration Loops
        1. 7.4.12.1 Calibration Overview
        2. 7.4.12.2 Different Modes for Different Needs
        3. 7.4.12.3 Calibration Initiation
        4. 7.4.12.4 Key Calibration Settings
        5. 7.4.12.5 General Black Loop Operation
        6. 7.4.12.6 ADAC/DDAC Convergence
        7. 7.4.12.7 General White Loop Operation
        8. 7.4.12.8 White Loop Modes
        9. 7.4.12.9 Bimodal (Automatic) Correction
      13. 7.4.13 Coarse Pixel Phase Alignment
      14. 7.4.14 Internal Sample Timing
        1. 7.4.14.1 CCD Timing Generation
        2. 7.4.14.2 SH Interval Details - Multiple States Defined within SH Interval
        3. 7.4.14.3 SH Outputs - Low Speed Line Timing Usage
        4. 7.4.14.4 Controlled Inversion
      15. 7.4.15 CCD Timing Generator Master/Slave Modes
        1. 7.4.15.1 Master Timing Generator Mode
        2. 7.4.15.2 Slave Timing Generator Mode
        3. 7.4.15.3 Multiple SH Intervals
        4. 7.4.15.4 Support for CIS Sensors
        5. 7.4.15.5 LVDS Output Format - LM98714 Mode
      16. 7.4.16 LVDS Control Bit Coding - LM98714 Mode
        1. 7.4.16.1 Latency Compensation of CB Bits
      17. 7.4.17 Flexible LVDS Formatting Mode: Mapping
        1. 7.4.17.1 TXOUT0 Disable
        2. 7.4.17.2 Parity
        3. 7.4.17.3 Latency Compensation of CB Bits
      18. 7.4.18 LVDS Data Randomization for EMI Reduction
        1. 7.4.18.1 Mode 00: Scrambler Disabled
        2. 7.4.18.2 Mode 01: Full Scrambler Using The Full 21-bit Pseudo Random Sequence
        3. 7.4.18.3 Mode 10: One bit scrambler using the prs shift bit only, sending this bit out on a CB bit
        4. 7.4.18.4 Mode 11: “LSB” scrambler
        5. 7.4.18.5 Scrambler Inhibit Bit Select
      19. 7.4.19 LVDS Drive Strength Adjust
      20. 7.4.20 LVDS Output Timing Details
        1. 7.4.20.1 Optional TXCLK Delay
      21. 7.4.21 LVDS Data Latency Diagrams
      22. 7.4.22 Data Test Patterns
        1. 7.4.22.1 LVDS Output Pattern Modes
          1. 7.4.22.1.1 Worst Case Transitions (Alternating 0x2A/0x55 on Each LVDS Pair)
          2. 7.4.22.1.2 Fixed Output Data
        2. 7.4.22.2 AFE Output Pattern Modes
      23. 7.4.23 CMOS Output Format
      24. 7.4.24 CMOS Output Data Latency Diagrams
      25. 7.4.25 Serial Interface
        1. 7.4.25.1 Serial Interface Operating Modes
        2. 7.4.25.2 Serial Interface in Absence of MCLK
        3. 7.4.25.3 Writing to the Serial Registers
        4. 7.4.25.4 Reading The Serial Registers
        5. 7.4.25.5 LM98714 Compatible 3 Wire Serial Signaling
        6. 7.4.25.6 LM98722 4 Wire Serial Signaling
        7. 7.4.25.7 Serial Interface Timing Details
    5. 7.5 Registers Maps
      1. 7.5.1 Configuration Registers
  8. Layout
    1. 8.1 Layout Example
  9. Device and Documentation Support
    1. 9.1 Device Support
    2. 9.2 Trademarks
    3. 9.3 Electrostatic Discharge Caution
    4. 9.4 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings(2)(3)(1)(6)

MIN MAX UNIT
Supply Voltage (VA, VR, VD, VC) 4.2 V
Voltage on Any Input Pin (not to exceed 4.2 V) −0.3 VA + 0.3 V
Voltage on Any Output Pin (except DVB and not to exceed 4.2 V) −0.3 VA + 0.3 V
DVB Output Pin Voltage 2.0 V
Input Current at any pin other than Supply Pins(4) ±25 mA
Package Input Current (except Supply Pins)(4) ±50 mA
Maximum Junction Temperature (TA) 150 °C
Package Dissipation at TA = 25°C(5) >1.89 W
Storage Temperature, Tstg –65 +150 °C
(1) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Operation of the device beyond the Operating Ratings is not recommended.
(3) All voltages are measured with respect to AGND = DGND = 0V, unless otherwise specified.
(4) When the input voltage (VIN) at any pin exceeds the power supplies (VIN < GND or VIN > VA or VD), the current at that pin should be limited to 25 mA. The 50 mA maximum package input current rating limits the number of pins that can simultaneously safely exceed the power supplies with an input current of 25 mA to two.
(5) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX,RθJA and the ambient temperature, TA. The maximum allowable power dissipation at any temperature is PD = (TJMAX – TA)/RθJA. The values for maximum power dissipation listed above will be reached only when the device is operated in a severe fault condition, (for example, when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Such conditions should always be avoided.
(6) Soldering process must comply with Texas Instrument’s Reflow Temperature Profile specifications. Refer to www.ti.com/packaging Reflow temperature profiles are different for lead-free and non-lead-free packages.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge(3) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2500 V may actually have higher performance.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±250 V may actually have higher performance.
(3) Human body model is 100 pF capacitor discharged through a 1.5-kΩ resistor. Machine model is 220 pF discharged through 0 Ω.

6.3 Recommended Operating Conditions(1)(2)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Operating Temperature Range 0 ≤ TA ≤ +70 °C
All Supply Voltage +3.0 +3.6 V
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Operation of the device beyond the Operating Ratings is not recommended.
(2) All voltages are measured with respect to AGND = DGND = 0V, unless otherwise specified.

6.4 Thermal Information

THERMAL METRIC(1) TSSOP UNIT
56 TERMINALS
RθJA Junction-to-ambient thermal resistance <66 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

The following specifications apply for VA = VD = VC = 3.3 V, CL = 10 pF, and fINCLK = 15 MHz unless otherwise specified. All other limits TA = 25°C.
PARAMETER TEST CONDITIONS MIN(2) TYP(1) MAX(2)(3) UNIT
CMOS DIGITAL INPUT DC SPECIFICATIONS (RESETb, SH_R, SCLK, SENb)
VIH Logical “1” Input Voltage 2.0 V
VIL Logical “0” Input Voltage 0.8 V
VIHYST Logic Input Hysteresis 0.6
IIH Logical “1” Input Current VIH = VD:
RESET, SEN 100 nA
SH_R, SCLK, SDI, CAL 65 μA
CE 30
IIL Logical “0” Input Current VIL = DGND
RESET, SEN, -65 μA
SH_R, SCLK, SDI, CAL -100 nA
CE -30 μA
CMOS DIGITAL OUTPUT DC SPECIFICATIONS (SH1 to SH5, RS, CP, PHIA, PHIB, PHIC)
VOH Logical “1” Output Voltage IOUT = -0.5 mA 3.0 V
VOL Logical “0” Output Voltage IOUT = 1.6 mA 0.21 V
IOS Output Short Circuit Current VOUT = DGND 18 mA
VOUT= VD -25
IOZ CMOS Output TRI-STATE Current VOUT = DGND 20 nA
VOUT = VD -25
CMOS DIGITAL OUTPUT DC SPECIFICATIONS (CMOS DATA OUTPUTS)
VOH Logical “1” Output Voltage IOUT = -0.5 mA 2.3 V
VOL Logical “0” Output Voltage IOUT = 1.6 mA 0.12 V
IOS Output Short Circuit Current VOUT = DGND 12 mA
VOUT= VD -14
IOZ CMOS Output TRI-STATE Current VOUT = DGND 20 nA
VOUT = VD -25
LVDS/CMOS CLOCK RECEIVER DC SPECIFICATIONS (INCLK+ and INCLK- PINS)
VIHL Differential LVDS Clock RL = 100 Ω, VCM (LVDS Input Common Mode Voltage)= 1.25 V 200 mV
High Threshold Voltage
VILL Differential LVDS Clock -200 mV
Low Threshold Voltage
VIHC CMOS Clock INCLK- = DGND 2.0 V
High Threshold Voltage
VILC CMOS Clock 0.8 V
Low Threshold Voltage
IIHL CMOS Clock 230 260 μA
Input High Current
IILC CMOS Clock -135 -120 μA
Input Low Current
LVDS OUTPUT DC SPECIFICATIONS
VOD Differential Output Voltage RL = 100 Ω 280 390 490 mV
VOS LVDS Output Offset Voltage 1.08 1.20 1.33 V
IOS Output Short Circuit Current VOUT = 0 V, RL = 100 Ω 8.5 mA
POWER SUPPLY SPECIFICATIONS
IA VA Analog Supply Current LVDS Output Data Format 139 162 mA
LVDS Output Data Format (Powerdown) 3.1 4.5 mA
CMOS Output Data Format (40 MHz) 137 161 mA
ID VD Digital Output Driver Supply Current LVDS Output Data Format 50 65 mA
LVDS Output Data Format (Powerdown) 5.5 8 mA
CMOS Output Data Format
(ATE Loading of CMOS Outputs > 50 pF)
(40 MHz)
48 62 mA
IC VC CCD Timing Generator Output Driver Supply Current Typical sensor outputs: 1 4 mA
SH1-SH5, PHIA, PHIB, PHIC, RS, CP
(ATE Loading of CMOS
Outputs > 50pF)
PWR Average Power Dissipation LVDS Output Data Format 630 736 mW
LVDS Output Data Format (Powerdown) 28 32 mW
CMOS Output Data Format
(ATE Loading of CMOS Outputs > 50 pF)
(40 MHz)
600 740 mW
INPUT SAMPLING CIRCUIT SPECIFICATIONS
VIN Input Voltage Level CDS Gain=1x, PGA Gain=1x 2.3 Vp-p
CDS Gain=2x, PGA Gain= 1x 1.22
IIN_SH Sample and Hold Mode Input Leakage Current Source Followers Off
CDS Gain = 1x
OSX = VA (OSX = AGND)
(-103) 19
(-95)
25 μA
Source Followers Off
CDS Gain = 2x
OSX = VA (OSX = AGND)
(-152) 33
(-141)
50 μA
Source Followers On
CDS Gain = 2x
OSX = VA (OSX = AGND)
(-250) 20
(-50)
250 nA
CSH Sample/Hold Mode CDS Gain = 1x 2.5 pF
Equivalent Input Capacitance
CDS Gain = 2x 4 pF
IIN_CDS CDS Mode Source Followers Off
OSX = VA (OSX = AGND)
(-250) 10
(-50)
250 nA
Input Leakage Current
RCLPIN CLPIN Switch Resistance (OSX to VCLP Node) 16 55 Ω
VCLP REFERENCE CIRCUIT SPECIFICATIONS
VVCLP VCLP Voltage 000 VCLP Voltage Setting = 000 0.85VA V
VCLP Voltage 001 VCLP Voltage Setting = 001 0.9VA V
VCLP Voltage 010 VCLP Voltage Setting = 010 0.95VA V
VCLP Voltage 011 VCLP Voltage Setting = 011 0.6VA V
VCLP Voltage 100 VCLP Voltage Setting = 100 0.55VA V
VCLP Voltage 101 VCLP Voltage Setting = 101 0.4VA V
VCLP Voltage 110 VCLP Voltage Setting = 110 0.35VA V
VCLP Voltage 111 VCLP Voltage Setting = 111 0.15VA V
ISC VCLP DAC Short Circuit Output Current 30 mA
BLACK LEVEL OFFSET DAC SPECIFICATIONS
Resolution 10 Bits
Monotonicity Ensured by characterization
Offset Adjustment Range
Referred to AFE Input
CDS Gain = 1x mV
Minimum DAC Code = 0x000 -614
Maximum DAC Code = 0x3FF 614
CDS Gain = 2x mV
Minimum DAC Code = 0x000 -307
Maximum DAC Code = 0x3FF 307
Offset Adjustment Range
Referred to AFE Output
Minimum DAC Code = 0x000 -17500 -16130 LSB
Maximum DAC Code = 0x3FF +16130 +17500
DAC LSB Step Size CDS Gain = 1x 1.2
(32)
mV
Referred to AFE Output (LSB)
DNL Differential Non-Linearity -0.85 +0.74/ -0.37 +2.4 LSB
INL Integral Non-Linearity -2.5 +0.72/ -0.56 +2.5 LSB
PGA SPECIFICATIONS
Gain Resolution 8 Bits
Monotonicity Ensured by characterization
Maximum Gain CDS Gain = 1x 7.7 8.3 8.8 V/V
CDS Gain = 1x 17.7 18.4 18.9 dB
Minimum Gain CDS Gain = 1x 0.58 0.64 0.70 V/V
CDS Gain = 1x -4.7 -4.2 -3.5 dB
PGA Function Gain (V/V) = (180/(277-PGA Code))
Gain (dB) = 20LOG10(180/(277-PGA Code))
Channel Matching Minimum PGA Gain 3%
Maximum PGA Gain 12.7%
ADC SPECIFICATIONS
VREFT Top of Reference 2.07 V
VREFB Bottom of Reference 0.89 V
VREFT - VREFB Differential Reference Voltage 1.06 1.18 1.30 V
Overrange Output Code 65535
Underrange Output Code 0
DIGITAL OFFSET “DAC” SPECIFICATIONS
Resolution 7 Bits
Digital Offset DAC LSB Step Size Referred to AFE Output 32 LSB
Offset Adjustment Range Min DAC Code =7b0000000 -2048 LSB
Referred to AFE Output Mid DAC Code =7b1000000 0
Max DAC Code = 7b1111111 +2016
FULL CHANNEL PERFORMANCE SPECIFICATIONS
DNL Differential Non-Linearity See (4) -0.999 +0.8/-0.7 2.5 LSB
INL Integral Non-Linearity See (4) -75 +18/-25 75 LSB
SNR Total Output Noise Minimum PGA Gain(4) -76 dB
10 26 LSB RMS
Maximum PGA Gain(4) -56 dB
96 LSB RMS
Channel to Channel Crosstalk Mode 3 26 LSB
Mode 2 17
(1) Typical figures are at TA = 25°C, and represent most likely parametric norms at the time of product characterization. The typical specifications are not ensured.
(2) Test limits are ensured to TI's AOQL (Average Outgoing Quality Level).

6.6 AC Timing Requirements

The following specifications apply for VA = VD = VC = 3.3 V, CL = 10 pF, and fINCLK = 15 MHz unless otherwise specified. All other limits TA = 25°C.(3)
PARAMETER TEST CONDITIONS MIN(2) TYP(1) MAX(2) UNIT
INPUT CLOCK TIMING SPECIFICATIONS
fINCLK Input Clock Frequency INCLK = PIXCLK
(Pixel Rate Clock)
0.66 15 (Mode 3) MHz
1 22.5 (Mode 2)
1 22.5 (Mode 1)
INCLK = ADCCLK
(ADC Rate Clock)
2 45 (Mode 3) MHz
2 45 (Mode 2)
2 22.5 (Mode 1)
Tdc Input Clock Duty Cycle 40/60% 50/50% 60/40%
FULL CHANNEL LATENCY SPECIFICATIONS
tLAT3 3 Channel Mode Pipeline Delay
See Figure 50 (LVDS)
See Figure 55 (CMOS)
PIXPHASE0 24 TADC
PIXPHASE1 23.5
PIXPHASE2 23
PIXPHASE3 22.5
tLAT2 2 Channel Mode Pipeline Delay
See Figure 51 (LVDS)
See Figure 56 (CMOS)
PIXPHASE0 21 TADC
PIXPHASE1 20.5
PIXPHASE2 20
PIXPHASE3 19.5
tLAT1 1 Channel Mode Pipeline Delay
See Figure 52 (LVDS)
See Figure 57 (CMOS)
PIXPHASE0 19 TADC
PIXPHASE1 18.5
PIXPHASE2 18
PIXPHASE3 17.5
SH_R TIMING SPECIFICATIONS (see Figure 40)
tSHR_S SH_R Setup Time 2 ns
tSHR_H SH_R Hold Time 2 ns
LVDS OUTPUT TIMING SPECIFICATIONS (see Figure 49)
TXpp0 TXCLK to Pulse Position 0 -0.26 0 0.26 ns
TXpp1 TXCLK to Pulse Position 1 1.50 1.76 2.02 ns
TXpp2 TXCLK to Pulse Position 2 3.26 3.53 3.79 ns
TXpp3 TXCLK to Pulse Position 3 5.03 5.29 5.55 ns
TXpp4 TXCLK to Pulse Position 4 6.80 7.06 7.32 ns
TXpp5 TXCLK to Pulse Position 5 8.56 8.82 9.08 ns
TXpp6 TXCLK to Pulse Position 6 10.32 10.58 10.84 ns
CMOS OUTPUT TIMING SPECIFICATIONS
tCRDO CLKOUT Rising Edge to CMOS Output Data Transition fINCLK = 40MHz 2 4.5 9 ns
INCLK = ADCCLK
(ADC Rate Clock)
SERIAL INTERFACE TIMING SPECIFICATIONS
fSCLK Input Clock Frequency fSCLK <= fINCLK 15/22.5/22.5 MHz
INCLK = PIXCLK
(Pixel Rate Clock)
Mode 3/2/1
fSCLK <= fINCLK 45/45/22.5 MHz
INCLK = ADCCLK
(ADC Rate Clock)
Mode 3/2/1
SCLK Duty Cycle 50/50 ns
tIH Input Hold Time 1.5 ns
tIS Input Setup Time 2.5 ns
tSENSC SCLK Start Time After SEN Low 1.5 ns
tSCSEN SEN High after last SCLK Rising Edge 2.5 ns
tSENW SEN Pulse Width INCLK present(5)(6) 6 TINCLK
INCLK stopped(5)(6) 50 ns
tOD Output Delay Time 11 14 ns
tHZ Data Output to High Z 0.5 TSCLK
(1) Typical figures are at TA = 25°C, and represent most likely parametric norms at the time of product characterization. The typical specifications are not ensured.
(2) Test limits are ensured to TI's AOQL (Average Outgoing Quality Level).
(3) The analog inputs are protected as shown in Figure 1. Input voltage magnitudes beyond the supply rails will not damage the device, provided the current is limited per Note 4 under the Absolute Maximum Ratings table. However, input errors will be generated If the input goes above VA and below AGND.
(4) This parameter ensured by design and characterization.
(5) If the input INCLK is divided down to a lower internal clock rate via the PLL, the parameter tSENW will be increased by the same factor.
(6) When the Spread Spectrum Clock Generation feature is enabled, tSENW should be increased by 1.