SNOSD12D November   2018  – January 2019 LMG1210

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Typical Application
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
    8. 6.8 Timing Diagrams
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Bootstrap Diode Operation
      2. 7.3.2 LDO Operation
      3. 7.3.3 Dead Time Selection
      4. 7.3.4 Overtemperature Protection
      5. 7.3.5 High-Performance Level Shifter
      6. 7.3.6 Negative HS Voltage Handling
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Bypass Capacitor
        2. 8.2.2.2 Bootstrap Diode Selection
        3. 8.2.2.3 Handling Ground Bounce
        4. 8.2.2.4 Independent Input Mode
        5. 8.2.2.5 Computing Power Dissipation
      3. 8.2.3 Application Curves
    3. 8.3 Do's and Don'ts
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
  • RVR|19
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Device Functional Modes

The mode of operation is determined by the state of DHL and DLH pins during power up. The state of the pins is sampled at power up and cannot be changed during operation. There are two different modes: independent operation where separate HI and LI signals are required, and PWM mode where one PWM input signal is required and the LMG1210 generates the complementary HI and LI signals. For PWM input, the dead time for the low-to-high and high-to-low switch-node transition is independently set by an external resistor at DHL and DLH. For independent input mode, DLH is tied to VDD and DHL is internally set to high-impedance and can be tied to VDD, tied to ground or left floating.

LMG1210 operation_mode_selection_snosd12.gifFigure 16. Operation Mode Selection

Table 1 lists the functional modes for the LMG1210.

Table 1. LMG1210 Truth Table

INPUTS PWM MODE INDEPENDENT MODE
EN/HI PWM/LI HO LO HO LO
0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 1 1 0
1 1 1 0 1 1