SNOSDA7F September   2020  – August 2024 LMG3422R030 , LMG3426R030 , LMG3427R030

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Switching Parameters
      1. 6.1.1 Turn-On Times
      2. 6.1.2 Turn-Off Times
      3. 6.1.3 Drain-Source Turn-On Slew Rate
      4. 6.1.4 Turn-On and Turn-Off Switching Energy
      5. 6.1.5 Zero-Voltage Detection Times (LMG3426R030 only)
      6. 6.1.6 Zero-Current Detection Times (LMG3427R030 only)
    2. 6.2 Safe Operation Area (SOA)
      1. 6.2.1 Repetitive SOA
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
      1. 7.2.1 LMG3422R030 Functional Block Diagram
      2. 7.2.2 LMG3426R030 Functional Block Diagram
      3. 7.2.3 LMG3427R030 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  GaN FET Operation Definitions
      2. 7.3.2  Direct-Drive GaN Architecture
      3. 7.3.3  Drain-Source Voltage Capability
      4. 7.3.4  Internal Buck-Boost DC-DC Converter
      5. 7.3.5  VDD Bias Supply
      6. 7.3.6  Auxiliary LDO
      7. 7.3.7  Fault Protection
        1. 7.3.7.1 Overcurrent Protection and Short-Circuit Protection
        2. 7.3.7.2 Overtemperature Shutdown Protection
        3. 7.3.7.3 UVLO Protection
        4. 7.3.7.4 High-Impedance RDRV Pin Protection
        5. 7.3.7.5 Fault Reporting
      8. 7.3.8  Drive-Strength Adjustment
      9. 7.3.9  Temperature-Sensing Output
      10. 7.3.10 Ideal-Diode Mode Operation
        1. 7.3.10.1 Overtemperature-Shutdown Ideal-Diode Mode
      11. 7.3.11 Zero-Voltage Detection (ZVD) (LMG3426R030 only)
      12. 7.3.12 Zero-Current Detection (ZCD) (LMG3427R030 only)
    4. 7.4 Start-Up Sequence
    5. 7.5 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Slew Rate Selection
        2. 8.2.2.2 Signal Level-Shifting
        3. 8.2.2.3 Buck-Boost Converter Design
      3. 8.2.3 Application Curves
    3. 8.3 Do's and Don'ts
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Using an Isolated Power Supply
      2. 8.4.2 Using a Bootstrap Diode
        1. 8.4.2.1 Diode Selection
        2. 8.4.2.2 Managing the Bootstrap Voltage
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Solder-Joint Reliability
        2. 8.5.1.2 Power-Loop Inductance
        3. 8.5.1.3 Signal-Ground Connection
        4. 8.5.1.4 Bypass Capacitors
        5. 8.5.1.5 Switch-Node Capacitance
        6. 8.5.1.6 Signal Integrity
        7. 8.5.1.7 High-Voltage Spacing
        8. 8.5.1.8 Thermal Recommendations
      2. 8.5.2 Layout Examples
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Export Control Notice
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RQZ|54
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Characteristics

LMG3422R030 LMG3426R030 LMG3427R030 Drain-Current Turn-On
                        Delay Time vs Drive-Strength ResistanceFigure 5-1 Drain-Current Turn-On Delay Time vs Drive-Strength Resistance
LMG3422R030 LMG3426R030 LMG3427R030 Turn-On Rise Time vs
                        Drive-Strength ResistanceFigure 5-3 Turn-On Rise Time vs Drive-Strength Resistance
LMG3422R030 LMG3426R030 LMG3427R030 Drain Current vs
                        Drain-Source Voltage
 
Figure 5-5 Drain Current vs Drain-Source Voltage
LMG3422R030 LMG3426R030 LMG3427R030 Normalized On-Resistance
                        vs Junction TemperatureFigure 5-7 Normalized On-Resistance vs Junction Temperature
LMG3422R030 LMG3426R030 LMG3427R030 VDD Supply Current vs IN
                        Switching Frequency
VDD = 12V TJ = 25°C
Figure 5-9 VDD Supply Current vs IN Switching Frequency
LMG3422R030 LMG3426R030 LMG3427R030 Half-Bridge Switching
                        Energy vs Inductive Load Current
VDS = 400V
Figure 5-11 Half-Bridge Switching Energy vs Inductive Load Current
LMG3422R030 LMG3426R030 LMG3427R030 Turn-On Delay Time vs
                        Drive-Strength ResistanceFigure 5-2 Turn-On Delay Time vs Drive-Strength Resistance
LMG3422R030 LMG3426R030 LMG3427R030 Turn-On Slew Rate vs
                        Drive-Strength ResistanceFigure 5-4 Turn-On Slew Rate vs Drive-Strength Resistance
LMG3422R030 LMG3426R030 LMG3427R030 Off-State Source-Drain
                        Voltage vs Source Current
IN = 0V
Figure 5-6 Off-State Source-Drain Voltage vs Source Current
LMG3422R030 LMG3426R030 LMG3427R030 Output Capacitance vs
                        Drain-Source VoltageFigure 5-8 Output Capacitance vs Drain-Source Voltage
LMG3422R030 LMG3426R030 LMG3427R030 VDD Supply Current vs IN
                        Switching Frequency
VDD = 12V TJ = 125°C
Figure 5-10 VDD Supply Current vs IN Switching Frequency
LMG3422R030 LMG3426R030 LMG3427R030 Repetitive Safe Operation AreaFigure 5-12 Repetitive Safe Operation Area