SBOSA87A December   2021  – November 2022 LMH5485-SEP

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: Vs+ – Vs- = 5 V
    6. 7.6 Electrical Characteristics: Vs+ – Vs- = 3 V
    7. 7.7 Typical Characteristics: 5 V Single Supply
    8. 7.8 Typical Characteristics: 3 V Single Supply
    9. 7.9 Typical Characteristics: 3 V to 5 V Supply Range
  8. Parameter Measurement Information
    1. 8.1 Example Characterization Circuits
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Differential I/O
      2. 9.3.2 Power-Down Control Pin (PD)
        1. 9.3.2.1 Operating the Power Shutdown Feature
      3. 9.3.3 Input Overdrive Operation
    4. 9.4 Device Functional Modes
      1. 9.4.1 Operation from Single-Ended Sources to Differential Outputs
        1. 9.4.1.1 AC-Coupled Signal Path Considerations for Single-Ended Input to Differential Output Conversion
        2. 9.4.1.2 DC-Coupled Input Signal Path Considerations for Single-Ended to Differential Conversion
      2. 9.4.2 Differential-Input to Differential-Output Operation
        1. 9.4.2.1 AC-Coupled, Differential-Input to Differential-Output Design Issues
        2. 9.4.2.2 DC-Coupled, Differential-Input to Differential-Output Design Issues
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Designing Attenuators
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Interfacing to High-Performance ADCs
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The LMH5485-SEP is a radiation tolerant, low-power, voltage-feedback, fully differential amplifier (FDA). This part is able to achieve a high gain bandwidth product (GBWP) of 850-MHz, allowing it to maintain excellent distortion performance over a wide range of frequencies as shown in the following figure. This wide bandwidth range is also achieved with a relatively low power consumption of 10.1-mA and broadband voltage noise of 2.4nV/√Hz. This combination of power consumption, bandwidth and noise allows the LMH5485-SEP to be well suited for power sensitive data acquisition systems with frequencies >10 MHz that require both the best signal-to-noise ratio (SNR) and spurious-free dynamic range (SFDR).

The LMH5485-SEP features the negative-rail input required when interfacing with a DC-coupled, ground-centered, source signal. This negative-rail input, with a rail-to-rail output, allows for easy interface between single-ended, ground-referenced, bipolar signal sources and a wide variety of successive approximation register (SAR), delta-sigma (ΔΣ), or pipeline ADCs using only a single 2.7 V to 5.4 V power supply. This device also features a low offset voltage drift of ±0.5 μV/°C, allowing it to maintain excellent DC performance over it's wide temperature range of –55°C to +125°C.

Package Information(1)(2)
PART NUMBER PACKAGE BODY SIZE (NOM)
LMH5485-SEP DGK (VSSOP, 8) 3.00 mm × 3.00 mm
For all available packages, see the package option addendum at the end of the data sheet.
Simplified Schematic
Harmonic Distortion vs Frequency