SNOSAK0I December   2004  – January 2015 LMH6550

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Typical Application Schematic
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: ±5 V
    6. 7.6 Electrical Characteristics: 5 V
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Typical Fully Differential Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Fully Differential Operation
          2. 9.2.1.2.2 Capacitive Drive
          3. 9.2.1.2.3 Application Curves
      2. 9.2.2 Driving Analog-to-Digital Converters
      3. 9.2.3 Single-Ended Input to Differential Output
      4. 9.2.4 Single Supply Operation
      5. 9.2.5 Using Transformers
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Power Dissipation
    4. 11.4 ESD Protection
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

10 Power Supply Recommendations

The LMH6550 can be used with any combination of positive and negative power supplies as long as the combined supply voltage is between 4.5 V and 12 V. The LMH6550 will provide best performance when the output voltage is set at the mid supply voltage, and when the total supply voltage is between 9 V and 12 V. When selecting a supply voltage that is less than 9 V it is important to consider both the input common-mode voltage range as well as the output voltage range.

Power supply bypassing as shown in Figure 23 and Figure 24 is important and power supply regulation should be within 5% or better when using a supply voltage near the edges of the operating range.